首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catechin-rich green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by alleviating gut-derived endotoxin translocation and hepatic Toll-like receptor-4 (TLR4)–nuclear factor κB (NFκB) inflammation. We hypothesized that intact GTE would attenuate NASH-associated responses along the gut–liver axis to a greater extent than purified (−)-epigallocatechin gallate (EGCG) or (+)-catechin (CAT). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF) diet, or the HF diet with 2% GTE, 0.3% EGCG or 0.3% CAT for 8 weeks prior to assessing NASH relative to endotoxemia, hepatic and intestinal inflammation, intestinal tight junction proteins (TJPs) and gut microbial ecology. GTE prevented HF-induced obesity to a greater extent than EGCG and CAT, whereas GTE and EGCG more favorably attenuated insulin resistance. GTE, EGCG and CAT similarly attenuated serum alanine aminotransferase and serum endotoxin, but only GTE and EGCG fully alleviated HF-induced NASH. However, hepatic TLR4/NFκB inflammatory responses that were otherwise increased in HF mice were similarly attenuated by GTE, EGCG and CAT. Each treatment also similarly prevented the HF-induced loss in expression of intestinal TJPs and hypoxia inducible factor-1α and the otherwise increased levels of ileal and colonic TNFα mRNA and fecal calprotectin protein concentrations. Gut microbial diversity that was otherwise lowered in HF mice was maintained by GTE and CAT only. Further, microbial metabolic functions were more similar between GTE and CAT. Collectively, GTE catechins similarly protect against endotoxin–TLR4–NFκB inflammation in NASH, but EGCG and CAT exert differential prebiotic and antimicrobial activities suggesting that catechin-mediated shifts in microbiota composition are not entirely responsible for their benefits along the gut–liver axis.  相似文献   

2.
Cocoa powder, derived Theobroma cacao, is a popular food ingredient that is commonly consumed in chocolate. Epidemiological and human intervention studies have reported that chocolate consumption is associated with reduced risk of cardiometabolic diseases. Laboratory studies have reported the dietary supplementation with cocoa or cocoa polyphenols can improve obesity and obesity-related comorbidities in preclinical models. Non-alcoholic fatty liver disease (NAFLD), one such comorbidity, is a risk factor for cirrhosis and hepatocellular carcinoma. Limited studies have examined the effect of cocoa/chocolate on NAFLD and underlying hepatoprotective mechanisms. Here, we examined the hepatoprotective effects of dietary supplementation with 80 mg/g cocoa powder for 10 wks in high fat (HF)-fed obese male C57BL/6J mice. We found that cocoa-supplemented mice had lower rate of body weight gain (22%), hepatic triacylglycerols (28%), lipid peroxides (57%), and mitochondrial DNA damage (75%) than HF-fed controls. These changes were associated with higher hepatic superoxide dismutase and glutathione peroxidase enzyme activity and increased expression of markers of hepatic mitochondrial biogenesis. We also found that the hepatic protein expression of sirtuin 3 (SIRT3), and mRNA expression of peroxisome proliferator activated receptor g coactivator (PGC) 1a, nuclear respiratory factor 1, and forkhead box O3 were higher in cocoa-treated mice compared to HF-fed controls. These factors play a role in coordinating mitochondrial biogenesis and expression of mitochondrial antioxidant response factors. Our results indicate that cocoa supplementation can mitigate the severity of NAFLD in obese mice and that these effects are related to SIRT3/PGC1a-mediated increases in antioxidant response and mitochondrial biogenesis.  相似文献   

3.
Cocoa can contain a high concentration of flavanols and procyanidins which have been reported to have strong antioxidative activity. In the present study, male Sprague-Dawley rats were fed diets containing 0, 0.5, 1, or 2% cocoa rich in flavanols for two weeks. Blood, liver, heart and testes were collected and analyzed for markers of oxidative damage. Plasma epicatechin concentrations, 8-hydroxy-2'-deoxyguanosine (8OH2'dG), and oxidized and reduced glutathione were quantitated by HPLC with electrochemical detection. Plasma F(2)-isoprostanes were measured using an enzyme immunoassay. Plasma epicatechin concentrations increased in a dose-dependant fashion according to the amount of cocoa in the diet (128 nM-790 nM). Cocoa supplementation was associated with lower than normal concentrations of 8OH2'dG in the testes (0.590 + 0.40 vs. 0.328 + 0.29; p < 0.05). Liver and heart 8OH2'dG levels were unaffected by dietary treatment. In erythrocytes, the glutathione pool was significantly less oxidized in the cocoa fed group compared to controls (p < 0.05). In liver and testes, no differences in superoxide dismutase activities were detected. Concentrations of plasma F(2)-isoprostanes and thiobarbituric acid reactive substances were similar in all groups. These results support the concept that a diet rich in flavanols and procyanidins can improve oxidant defense and reduce tissue markers for oxidative stress, although these effects can be tissue specific.  相似文献   

4.
Besides their well-known effect in the molting control in insects, ecdysteroids are steroid hormones that display potential pharmacologic and metabolic properties in mammals. The most common ecdysteroid, 20-hydroxyecdysone (20E) is found in many plants such as quinoa. The aim of the present study was to investigate the ability of quinoa extract (Q) enriched in 20E supplementation to prevent the onset of diet-induced obesity and to regulate the expression of adipocyte-specific genes in mice. Mice were fed a standard low-fat (LF) or a high-fat (HF) diet with or without supplementation by 20E-enriched Q or pure 20E for 3 weeks. Supplementation with Q reduced adipose tissue development in HF mice without modification of their body weight gain. This adipose tissue-specific effect was mainly associated with a reduced adipocyte size and a decrease in the expression of several genes involved in lipid storage, including lipoprotein lipase and phosphoenolpyruvate carboxykinase. Furthermore, Q-treated mice exhibited marked attenuation of mRNA levels of several inflammation markers (monocyte chemotactic protein-1, CD68) and insulin resistance (osteopontin, plasminogen activator inhibitor-1 (PAI-1)) as compared to HF mice. Q supplementation also reversed the effects of HF-induced downregulation of the uncoupling protein(s) (UCP(s)) mRNA levels in muscle. Similar results were obtained in mice fed a HF diet supplemented with similar amounts of pure 20E, suggesting that the latter accounted for most of the Q effects. Our study indicates that Q has an antiobesity activity in vivo and could be used as a nutritional supplement for the prevention and treatment of obesity and obesity-associated disorders.  相似文献   

5.
Excessive lipid deposition, oxidative stress and inflammation in liver tissues are regarded as crucial inducers of nonalcoholic steatohepatitis (NASH), which is the most frequent chronic liver disease and closely related to obesity and insulin resistance. In this work, the preventive and therapeutic effects of Citrus reticulata Blanco (Jizigan) peel extract (JZE) on NASH induced by high fat (HF) diet and methionine choline-deficient (MCD) diet in C57BL/6 mice were investigated. We found that daily supplementation of JZE with an HF diet effectively ameliorated glucose tolerance and insulin resistance. In addition, the key indexes of lipid profiles, oxidative stress, hepatic steatosis and inflammatory factors were also ameliorated in both NASH mouse models. Furthermore, JZE treatment activated nuclear factor erythroid-2-related factor 2 (Nrf2) in the livers of diet- induced NASH mice. Our study suggests that JZE might alleviate NASH via the activation of Nrf2 signaling and that citrus Jizigan could be used as a dietary therapy for NASH and related metabolic syndrome.  相似文献   

6.
Many studies have investigated the effect of crude tomato peel in vivo, but no studies have determined the dose-effect of dry tomato peel (DTP) on glucose intolerance, insulin resistance, and atherogenic dyslipidemia induced by a high-saturated-fat (HSF) diet in vivo. The aim of this study was to investigate the effects of different doses of DTP on the levels of oxidative stress in mice fed an HSF and cholesterol-rich diet for 12 weeks. The main outcomes are glucose and insulin tolerance, plasma lipids, and hepatic steatosis and inflammation. BALB/c male mice (n=40) (8 weeks old, weighing 22.2±1.0 g) were divided into four treatment groups (10 mice/group): (a) high-fat control diet (HF Ctrl), which contains sunflower oil as a sole source of fat; (b) HSF/high-cholesterol (HC) diet; (c) HSF/HC diet supplemented with 9% DTP and (d) HSF/HC diet supplemented with 17% DTP. The HSF/HC diet significantly increased body weight gain, adipose tissue weight, fasting plasma glucose, fasting plasma insulin and lipid peroxidation and caused the development of liver steatosis and inflammation. Supplementation with DTP increased plasma lycopene concentration and reduced the development of indicators of metabolic syndrome, with no consistent effect of the DTP dose. Hepatic steatosis and inflammation were not reversed with DTP supplementation. Among mice fed the HSF/HC diet, DTP supplementation appears to have a beneficial effect on insulin resistance, which confirms the antiatherogenic effect of DTP.  相似文献   

7.
Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. Here, we hypothesized that cyanidin 3-glucoside (C3G), a typical anthocyanin reported to possess potent anti-inflammatory properties, would ameliorate obesity-associated inflammation and metabolic disorders, such as insulin resistance and hepatic steatosis in mouse models of diabesity. Male C57BL/6J obese mice fed a high-fat diet for 12 weeks and genetically diabetic db/db mice at an age of 6 weeks received dietary C3G supplementation (0.2%) for 5 weeks. We found that dietary C3G lowered fasting glucose levels and markedly improved the insulin sensitivity in both high-fat diet fed and db/db mice as compared with unsupplemented controls. White adipose tissue messenger RNA levels and serum concentrations of inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) were reduced by C3G, as did macrophage infiltration in adipose tissue. Concomitantly, hepatic triglyceride content and steatosis were alleviated by C3G. Moreover, C3G treatment decreased c-Jun N-terminal kinase activation and promoted phosphorylation and nuclear exclusion of forkhead box O1 after refeeding. These findings clearly indicate that C3G has significant potency in antidiabetic effects by modulating the c-Jun N-terminal kinase/forkhead box O1 signaling pathway and the related inflammatory adipocytokines.  相似文献   

8.
The Western diet, rich in fat and red meat, predisposes for inflammatory bowel disease (IBD); however, little is known about mechanisms involved. Red meat contains high levels of heme, a well-known inducer of the cytoprotective enzyme heme oxygenase-1 (HO-1). Pharmacological induction of HO-1 ameliorates experimental colitis. We analyzed the effect of a westernized high-fat (HF) diet supplemented with heme on intestinal HO-1 expression and dextran sulfate sodium (DSS)-induced colitis.Mice were fed chow or HF diets for 2 weeks. In the second week, the HF diet was supplemented with or without 0.5 μmol/g heme. Subsequently, the 3 diet groups were given drinking water with or without 4% DSS to induce colitis.Significant body weight reduction was first observed after 4 days in the chow/DSS mice (?5±3%), whereas this was evident already after 2 days (?6±2%) in HF/DSS mice, showing increased weight loss compared to chow/DSS mice in the following days. Heme supplementation further aggravated DSS-induced weight loss in HF mice (?18±4% vs. ?7±5% for HF+heme/DSS vs. HF/DSS, P<.01). Heme increased HO-1 expression in the colon epithelium but decreased villin messenger RNA levels, indicating epithelial damage. In contrast, heme did not affect DSS-induced colon shortening and histological scores of epithelial damage and inflammation.A westernized diet accelerates DSS-induced weight loss in mice, which is further aggravated by heme, despite the induction of HO-1 in the colon epithelium. Our data warrant a detailed analysis of the association of (red) meat-containing diets and the development of IBD.  相似文献   

9.
Fat browning has emerged as an attractive target for the treatment of obesity and related metabolic disorders. Its activation leads to increased energy expenditure and reduced adiposity, thus contributing to a better energy homeostasis. Green tea extracts (GTEs) were shown to attenuate obesity and low-grade inflammation and to induce the lipolytic pathway in the white adipose tissue (WAT) of mice fed a high-fat diet. The aim of the present study was to determine whether the antiobesity effect of an extract from green tea leaves was associated with the activation of browning in the WAT and/or the inhibition of whitening in the brown adipose tissue (BAT) in HF-diet induced obese mice. Mice were fed a control diet or an HF diet supplemented with or without 0.5% polyphenolic GTE for 8 weeks. GTE supplementation significantly reduced HF-induced adiposity (WAT and BAT) and HF-induced inflammation in WAT. Histological analysis revealed that GTE reduced the adipocyte size in the WAT and the lipid droplet size in the BAT. Markers of browning were induced in the WAT upon GTE treatment, whereas markers of HF-induced whitening were reduced in the BAT. These results suggest that browning activation in the WAT and whitening reduction in the BAT by the GTE could participate to the improvement of metabolic and inflammatory disorders mediated by GTE upon HF diet. Our study emphasizes the importance of using GTE as a nutritional tool to activate browning and to decrease fat storage in all adipose tissues, which attenuate obesity.  相似文献   

10.
Obese pregnant women develop severe insulin resistance and enhanced systemic and placental inflammation, suggesting associated modifications of endocrine and immune functions. Activation of innate immunity by endotoxins/lipopolysaccharides (LPS) has been proposed as a mechanism for enhancing metabolic alterations in disorders with insulin resistance. The aim of this study was to characterize the immune responses developed by the adipose tissue (AT) and their potential links to maternal endotoxemia in pregnancy with obesity. Blood and subcutaneous abdominal AT were obtained from 120 lean and obese women (term pregnancy) recruited at delivery. Gene expression was assessed in AT and stromal vascular cells isolated from a subset of 24 subjects from the same cohort. Doubling of plasma endotoxin concentrations indicated subclinical endotoxemia in obese compared with lean women. This was associated with significant increase in systemic C-reactive protein and interleukin-6 (IL-6) but not tumor necrosis factor-α (TNF-α) concentrations. AT inflammation was characterized by accumulation of CD68(+) macrophages with a threefold increased gene expression of the macrophage markers CD68, EMR1, and CD14. Gene expression for cytokines IL-6, TNF-α, IL-8, and monocyte chemotactic protein-1 (MCP1) and for LPS-sensing CD14, toll-like receptor 4 (TLR4), translocating chain-associated membrane protein 2 was 2.5-5-fold higher in stromal cells of obese compared to lean. LPS-treated cultured stromal cells of obese women expressed a 5-16-fold stimulation of the same cytokines upregulated in vivo. Our data demonstrate that subclinical endotoxemia is associated with systemic and AT inflammation in obese pregnant women. Recognition of bacterial pathogens may contribute to the combined dysfunction of innate immunity and the metabolic systems in AT.  相似文献   

11.
Inulin-type fructans (ITF) are nondigestible/fermentable carbohydrates which are able — through the modification of the gut microbiota — to counteract high-fat (HF) diet-induced obesity, endotoxemia and related-metabolic alterations. However, their influence on adipose tissue metabolism has been poorly studied until now. The aim of this study was to assess the influence of ITF supplementation on adipose tissue metabolism, by focusing on a G protein-coupled receptor (GPR), GPR43, as a potential link between gut fermentation processes and white adipose tissue development. Male C57bl6/J mice were fed a standard diet or an HF diet without or with ITF (0.2 g/day per mouse) during 4 weeks. The HF diet induced an accumulation of large adipocytes, promoted peroxisome proliferator activated receptor gamma (PPARγ)-activated differentiation factors and led to a huge increase in GPR43 expression in the subcutaneous adipose tissue. All those effects were blunted by ITF treatment, which modulated the gut microbiota in favor of bifidobacteria at the expense of Roseburia spp. and of Clostridium cluster XIVa. The dietary modulation of GPR43 expression seems independent of endotoxemia, in view of data obtained in vivo (acute and chronic lipopolysaccharides treatment). In conclusion, ITF, which promote gut fermentation, paradoxically counteract GPR43 overexpression induced in the adipose tissue by an HF diet, a phenomenon that correlates with a beneficial effect on adiposity and with potential decrease in PPARγ-activated processes.  相似文献   

12.
Behavioral therapies aimed at reducing excess body fat result in limited fat loss after dieting. To understand the causes for maintenance of adiposity, high‐fat (HF) diet–induced obese (DIO) mice were switched to a low‐fat chow diet, and the effects of chow on histological and molecular alterations of adipose tissue and metabolic parameters were examined. DIO mice reduced and stabilized their body weights after being switched to chow (HF‐chow), but retained a greater amount of adiposity than chow‐fed mice. Reduction in adipocyte volume, not number, caused a decrease in fat mass. HF‐chow mice showed normalized circulating insulin and leptin levels, improved glucose tolerance, and reduced inflammatory status in white adipose tissue (WAT). Circulating leptin levels corrected for fat mass were lower in HF‐chow mice. Leptin administration was used to test whether reduced leptin level of HF‐chow mice inhibited further fat loss. Leptin treatment led to an additional reduction in adiposity. Finally, HF‐HF mice had lower mRNA levels of β3 adrenergic receptor (β3‐AR) in epididymal WAT (EWAT) compared to chow‐fed mice, and diet change led to an increase in the WAT β3‐AR mRNA levels that were similar to the levels of chow‐fed mice, suggesting an elevation in sympathetic activation of WAT during diet switch relative to HF‐HF mice leading to the reduced leptin level and proinflammatory cytokine content. In summary, HF‐chow mice were resistant to further fat loss due to leptin insufficiency. Diet alteration from HF to low fat improved metabolic state of DIO mice, although their adiposity was defended at a higher level.  相似文献   

13.

Aims

Obesity and type 2 diabetes are characterised by low-grade inflammation, metabolic endotoxaemia (i.e., increased plasma lipopolysaccharides [LPS] levels) and altered endocannabinoid (eCB)-system tone. The aim of this study was to decipher the specific role of eCB-system stimulation or metabolic endotoxaemia in the onset of glucose intolerance, metabolic inflammation and altered lipid metabolism.

Methods

Mice were treated with either a cannabinoid (CB) receptor agonist (HU210) or low-dose LPS using subcutaneous mini-pumps for 6 weeks. After 3 weeks of the treatment under control (CT) diet, one-half of each group of mice were challenged with a high fat (HF) diet for the following 3-week period.

Results

Under basal conditions (control diet), chronic CB receptor agonist treatment (i.e., 6 weeks) induced glucose intolerance, stimulated metabolic endotoxaemia, and increased macrophage infiltration (CD11c and F4/80 expression) in the muscles; this phenomenon was associated with an altered lipid metabolism (increased PGC-1α expression and decreased CPT-1b expression) in this tissue. Chronic LPS treatment tended to increase the body weight and fat mass, with minor effects on the other metabolic parameters. Challenging mice with an HF diet following pre-treatment with the CB agonist exacerbated the HF diet-induced glucose intolerance, the muscle macrophage infiltration and the muscle''s lipid content without affecting the body weight or the fat mass.

Conclusion

Chronic CB receptor stimulation under basal conditions induces glucose intolerance, stimulates metabolic inflammation and alters lipid metabolism in the muscles. These effects worsen following the concomitant ingestion of an HF diet. Here, we highlight the central roles played by the eCB system and LPS in the pathophysiology of several hallmarks of obesity and type 2 diabetes.  相似文献   

14.
Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet. C57BL/6 J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11 weeks. Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp. and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption.  相似文献   

15.

Objective:

Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin‐resistance and low‐grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet‐induced obesity in rats.

Design and Methods:

Wistar rats were fed with control diet (CD) or high‐fat diet (HF) and either with or without supplemented ABM for 20 weeks.

Results:

HF diet‐induced body weight gain and increased fat mass compared to CD. In addition HF‐fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF‐fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet‐induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM‐treated rats suggesting a decrease in lipid absorption.

Conclusions:

Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system.  相似文献   

16.
Maternal overnutrition is associated with increased risk of metabolic disorders in the offspring. This study tested the hypothesis that maternal green tea (GT) supplementation can alleviate metabolic derangements in high-fat-diet-fed rats born of obese dams. Female Sprague–Dawley rats were fed low-fat (LF, 7%), high-fat (HF, 30%) or HF diet containing 0.75% or 1.0% GT extract (GT1, GT2) prior to conception and throughout gestation and lactation. Both doses of GT significantly improved metabolic parameters of HF-fed lactating dams (P<.05). Birth weight and litter size of offspring from HF dams were similar, but GT supplementation led to lighter pups on day 21 (P<.05). The weaned male pups received HF, GT1 or GT2 diet (dam/pup diet groups: LF/HF, HF/HF, HF/GT1, HF/GT2, GT1/HF and GT2/HF). At week 13, they had similar weight but insulin resistance index (IRI), serum nonesterified fatty acid (NEFA) and liver triglyceride of rats born to GT dams were 57%, 23% and 26% lower, accompanied by improved gene/protein expressions related to lipid and glucose metabolism, compared with the HF/HF rats (P<.05). Although HF/GT1 and HF/GT2 rats had lower serum NEFA, their insulin and IRI were comparable to HF/HF rats. This study shows that metabolic derangements induced by an overnourished mother could be offset by supplementing GT to the maternal diet and that this approach is more effective than giving GT to offspring since weaning. Hence, adverse effects of developmental programming are reversible, at least in part, by supplementing bioactive food component(s) to the mother's diet.  相似文献   

17.
The effects of a diet rich in saturated fat on fatty liver formation and the related mechanisms that induce fatty liver were examined. C57BL/6J mice were fed butter or safflower oil as a high-fat (HF) diet (40% fat calories) for 2, 4, 10, or 17 weeks. Although both HF diets induced similar levels of obesity, HF butter-fed mice showed a two to threefold increase in liver triacylglycerol (TG) concentration compared to HF safflower oil-fed mice at 4 or 10 weeks without hyperinsulinemia. At 4 weeks, increases in peroxisome proliferator-activated receptor γ2 (PPARγ2), CD36, and adipose differentiation-related protein (ADRP) mRNAs were observed in HF butter-fed mice; at 10 weeks, an increase in sterol regulatory element-binding protein-1c (SREBP-1c) was observed; at 17 weeks, these increases were attenuated. At 4 weeks, a single injection of adenoviral vector-based short hairpin interfering RNA against PPARγ2 in HF butter-fed mice reduced PPARγ protein and mRNA of its target genes (CD36 and ADRP) by 43%, 43%, and 39%, respectively, with a reduction in liver TG concentration by 38% in 5 days. PPARγ2 knockdown also reduced mRNAs in lipogenic genes (fatty-acid-synthase, stearoyl-CoA desaturase 1, acetyl-CoA carboxylase 1) without alteration of SREBP-1c mRNA. PPARγ2 knockdown reduced mRNAs in genes related to inflammation (CD68, interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein-1). In conclusion, saturated fatty acid-rich oil induced fatty liver in mice, and this was triggered initially by an increase in PPARγ2 protein in the liver, which led to increased expression of lipogenic genes. Inactivation of PPARγ2 may improve fatty liver induced by HF saturated fat.  相似文献   

18.
BackgroundIt has been demonstrated in animal studies that both polyphenol-rich pomegranate extract (PomX) and the polysaccharide inulin, ameliorate metabolic changes induced by a high-fat diet, but little is known about the specific mechanisms.ObjectiveThis study evaluated the effect of PomX (0.25%) and inulin (9%) alone or in combination on cholesterol and lipid metabolism in mice.MethodsMale C57BL/6 J mice were fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets supplemented with PomX (0.25%) and inulin (9%) alone or in combination for 4 weeks. At the end of intervention, serum and hepatic cholesterol, triglyceride levels, hepatic gene expression of key regulators of cholesterol and lipid metabolism as well as fecal cholesterol and bile acid excretion were determined.ResultsDietary supplementation of the HF/HS diet with PomX and inulin decreased hepatic and serum total cholesterol. Supplementation with PomX and inulin together resulted in lower hepatic and serum total cholesterol compared to individual treatments. Compared to HF/HS control, PomX increased gene expression of Cyp7a1 and Cyp7b1, key regulators of bile acid synthesis pathways. Inulin decreased gene expression of key regulators of cholesterol de novo synthesis Srebf2 and Hmgcr and significantly increased fecal elimination of total bile acids and neutral sterols. Only PomX in combination with inulin reduced liver and lipid weight significantly compared to the HF/HS control group. PomX showed a trend to decrease liver triglyceride (TG) levels, while inulin or PomX-inulin combination had no effect on either serum or liver TG levels.ConclusionDietary PomX and inulin supplementation decreased hepatic and serum total cholesterol by different mechanisms and the combination leading to a significant enhancement of the cholesterol-lowering effect.  相似文献   

19.
Cranberry (Vaccinium macrocarpon) consumption has been associated with health beneficial effects. Nonalcoholic fatty liver disease (NAFLD) is a comorbidity of obesity. In the present study, we investigated the effect of a polyphenol-rich cranberry extract (CBE) on hepatic inflammation in high fat (HF)-fed obese C57BL/6J mice. Following dietary treatment with 0.8% CBE for 10 weeks, we observed no change in body weight or visceral fat mass in CBE-supplemented mice compared to HF-fed control mice. We did observe a significant decrease in plasma alanine aminotransferase (31%) and histological severity of NAFLD (33% decrease in area of involvement, 29% decrease in lipid droplet size) compared to HF-fed controls. Hepatic protein levels of tumor necrosis factor α and C-C chemokine ligand 2 were reduced by 28% and 19%, respectively, following CBE supplementation. CBE significantly decreased hepatic mRNA levels of toll-like receptor 4 (TLR4, 63%) and nuclear factor κB (NFκB, 24%), as well as a number of genes related to the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 inflammasome. In conclusion, CBE reduced NAFLD and hepatic inflammation in HF-fed obese C57BL/6J mice. These effects appear to be related to mitigation of TLR4-NFκB related signaling; however, further studies into the underlying mechanisms of these hepatoprotective effects are needed.  相似文献   

20.
Obese adipose tissue (AT) inflammation is partly driven by accumulation of CD4+ T helper (Th)1 cells and reduced Th2 and T regulatory subsets, which promotes macrophage chemotaxis and ensuing AT metabolic dysfunction. This study investigated CD4+ T cell/adipocyte cytokine-mediated paracrine interactions (cross talk) as a target for dietary intervention to mitigate obese AT inflammation. Using an in vitro co-culture model designed to recapitulate CD4+ T cell accumulation in obese AT (5% of stromal vascular cellular fraction), 3T3-L1 adipocytes were co-cultured with purified splenic CD4+ T cells from C57Bl/6 mice consuming one of two isocaloric diets containing either 10% w/w safflower oil (control, CON) or 7% w/w safflower oil+3% w/w fish oil (FO) for 4 weeks (n=8–11/diet). The FO diet provided 1.9% kcal from the long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid, a dose that can be achieved by supplementation. Co-cultures were stimulated for 48 h with lipopolysaccharide (LPS) to mimic in vivo obese endotoxin levels or with conditioned media collected from LPS-stimulated visceral AT isolated from CON-fed mice. In both stimulation conditions, FO reduced mRNA expression and/or secreted protein levels of Th1 markers (T-bet, IFN-γ) and increased Th2 markers (GATA3, IL-4), concomitant with reduced inflammatory cytokines (IL-1β, IL-6, IL-12p70, TNF-α), macrophage chemokines (MCP-1, MCP-3, MIP-1α, MIP-2) and levels of activated central regulators of inflammatory signaling (NF-κB, STAT-1, STAT-3) (P<.05). Therefore, CD4+ T cell/adipocyte cross talk represents a potential target for LC n-3 PUFAs to mitigate obese AT inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号