首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Characteristics for the up-regulated response in the concentration of intracellular calcium ion ([Ca2+] i ) and in the sodium ion (Na+) current by serotonin (5-HT) were investigated in differentiated neuroblastoma × glioma hybrid NG108-15 (NG) cells. The results for the changes in [Ca2+] i by 5-HT were as follows, (1) The 5-HT-induced Ca2+ response was inhibited by 3 × 10−9 M tropisetron (a 5-HT3 receptor blocker), but not by other types of 5-HT receptor blockers; (2) The 5-HT-induced Ca2+ response was mainly inhibited by calciseptine (a L-type Ca2+ blocker), but not by other types of Ca2+ channel blockers or 10−7 M TTX (a voltage-sensitive Na+ channel blocker); (3) When the extracellular Na+ was removed by exchange with choline chloride or N-methyl-d-glucamine, the 5-HT-induced Ca2+ response was extremely inhibited. The results for the 5-HT-induced Na+ current by the whole cell patch-clamp technique were as follows, (1) The 5-HT-induced Na+ current in differentiated cells was significantly larger than that in undifferentiated cells; (2) The ED50 value for 5-HT-induced Na+ current in undifferentiated and differentiated cells was almost the same, about 4 × 10−6 M each other; (3) The 5-HT-induced Na+ current was completely blocked by 3 × 10−9 M tropisetron, but not by other 5-HT receptor antagonists and 10−7 M TTX. These results suggested that 5-HT-induced Ca2+ response in differentiated NG cells was mainly due to L-type voltage-gated Ca2+ channels allowing extracellular Na+ to enter via 5-HT3 receptors, but not through voltage-gated Na+ channels.  相似文献   

2.
Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor that promotes pulmonary artery smooth muscle cell (PASMC) proliferation. 5-HT-induced K+ channel inhibition increases [Ca2+]i in PASMCs, which is a major trigger for pulmonary vasoconstriction and development of pulmonary arterial hypertension (PAH). This study investigated whether KMUP-1 reduces pulmonary vasoconstriction in isolated pulmonary arteries (PAs) and attenuates 5-HT-inhibited K+ channel activities in PASMCs. In endothelium-denuded PA rings, KMUP-1 (1 μM) dose-dependently reduced 5-HT (100 μM) mediated contractile responses. Responses to KMUP-1 were reversed by K+ channel inhibitors (TEA, 10 mM, 4-aminopyridine, 5 mM, and paxilline, 10 μM). In primary PASMCs, KMUP-1 also dose-dependently restored 5-HT-inhibited voltage-gated K+-channel (Kv1.5 and Kv2.1) and large-conductance Ca2+-activated K+-channel (BKCa) proteins, as confirmed by immunofluorescent staining. Furthermore, 5-HT (10 μM)-inhibited Kv1.5 protein was unaffected by the PKA inhibitor KT5720 (1 μM) and the PKC activator PMA (1 μM), but these effects were reversed by KMUP-1 (1 μM), 8-Br-cAMP (100 μM), chelerythrine (1 μM), and KMUP-1 combined with a PKA/PKC activator or inhibitor. Notably, KMUP-1 reversed 5-HT-inhibited Kv1.5 protein and this response was significantly attenuated by co-incubation with the PKC activator PMA, suggesting that 5-HT-mediated PKC signaling can be modulated by KMUP-1. In conclusion, KMUP-1 ameliorates 5-HT-induced vasoconstriction and K+-channel inhibition through the PKC pathway, which could be valuable to prevent the development of PAH.  相似文献   

3.
Summary Human 5-HT3 receptors expressed in HEK 293 cells were studied using patch-clamp techniques. The permeability ratios of cations to Na+ were Li+, 1.16; K+, 1.04; Rb+, 1.11; Cs+ 1.11; NMDG+, 0.04; Ca2+, 0.49, and Mg2+, 0.37. The permeability sequence of the alkali metal cations was Li+ > Rb+ = Cs+ > K+ > Na+. Increased external concentrations of Ca2+ or Mg2+ decreased 5-HT-induced currents at all potentials tested in a voltage-independent manner. The single-channel conductance of human 5-HT3 receptors measured by fluctuation analysis of whole-cell currents was 790 ± 100fS. Differences in the basic properties of 5-HT3 receptors between species may explain interspecies differences in pharmacological properties.  相似文献   

4.
Summary Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2+-gated K+ current. The characteristics of the Ca2+-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 m of the intracellular Ca2+, but it was independent of the membrane potential.Charybdotoxin reduced the activity of the Ca2+-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2+-activated K+ channels.  相似文献   

5.
6.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7 m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels.  相似文献   

7.
In hippocampal neurons, 5-hydroxytryptamine (5-HT) activates an inwardly rectifying K+ current via G protein. We identified the K+ channel activated by 5-HT (K5-HT channel) and studied the effects of G protein subunits and nucleotides on the K+ channel kinetics in adult rat hippocampal neurons. In inside-out patches with 10 m 5-HT in the pipette, application of GTP (100 m) to the cytoplasmic side of the membrane activated an inwardly rectifying K+ channel with a slope conductance of 36±1 pS (symmetrical 140 mm K+) at –60 mV and a mean open time of 1.1±0.1 msec (n=5). Transducin activated the (K5-HT) channels and this was reversed by -GDP. Whether the K5-HT channel was activated endogenously (GTP, GTPS) or exogenously (), the presence of 1 mm ATP resulted in a 4-fold increase in channel activity due in large part to the prolongation of the open time duration. These effects of ATP were irreversible and not mimicked by AMPPMP, suggesting that phosphorylation might be involved. However, inhibitors of protein kinases A and C (H-7, staurosporine) and tyrosine kinase (tyrphostin 25) failed to block the effect of ATP. These results show that G activates the G protein-gated K+ channel in hippocampal neurons, and that ATP modifies the gating kinetics of the channel, resulting in increased open probability via as yet unknown pathways.  相似文献   

8.
The protective effects of sarpogrelate (SG), a 5-HT2A antagonist, were investigated in perfused guinea-pig Langendorff hearts subjected to ischemia and reperfusion. Changes in cellular levels of high phosphorous energy, NO and Ca2+ in the heart together with simultaneous recordings of left ventricular developed pressure (LVDP) were monitored using an nitric oxide (NO) electrode, fluorometry and 31P-NMR. The recovery of LVDP from ischemia by reperfusion was 30.1% in the control, while the treatment with SG (5×10-7 M) in pre- and post-ischemia hearts produced a gradual increase to 73.1 and 53.6%, respectively. At the final stage of ischemia, the intracellular concentration of Ca2+ ([Ca2+i) and release of NO increased with no twitching and remained at a high steady level. The addition of SG increased the transient NO signal (TNO) level at the end of ischemia compared with the control, but [Ca2+]i during ischemia decreased. Meanwhile, mitochondrial Ca2+ uptake on acidification or Ca2+ content changes of the perfusate was suppressed by pre-treatment with SG or the KATP channel opener diazoxide, but not the KATP channel blocker 5-HD. The myocardial NO elevated with 5-HT in normal Langendorff hearts was suppressed by the treatment with SG. Therefore, the existence of the 5HT2A receptor in a Langendorff heart was anticipated. By in vitro EPR, SG was found to directly quench the hydroxy radical. Thus, these findings suggested that the 5-HT2A receptor induced in ischemia–reperfusion plays an important role in the mitochondrial KATP channel of hearts in close relation with NO and active oxygen radicals.  相似文献   

9.
Summary Patch-clamp studies of cytoplasmic drops from the charophyteChara australis have previously revealed K+ channels combining high conductance (170 pS) with high selectivity for K+, which are voltage activated. The cation-selectivity sequence of the channel is shown here to be: K+>Rb+>NH 4 + Na+ and Cl. Divalent cytosolic ions reduce the K+ conductance of this channel and alter its K+ gating in a voltage-dependent manner. The order of blocking potency is Ba2+>Sr2+>Ca2+>Mg2+. The channel is activated by micromolar cytosolic Ca2+, an activation that is found to be only weakly voltage dependent. However, the concentration dependence of calcium activation is quite pronounced, having a Hill coefficient of three, equivalent to three bound Ca2+ needed to open the channel. The possible role of the Ca2+-activated K+ channel in the tonoplast ofChara is discussed.  相似文献   

10.
Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates that Ca2+ mobilization via extracellular Ca2+ influx through 5-HT3Rs/L-type Ca2+ channels, and intracellular Ca2+ release via RyRs on ER, initiate Ca2+-dependent sequential activation of CaMKIIα and ERK1/2, which contribute to the 5-HT3R-mediated, 2-Me-5-HT-evoked emesis.  相似文献   

11.
Abstract: The serotonin 5-HT3 receptor, a ligand-gated ion channel, has previously been shown to be present on a subpopulation of brain nerve terminals, where, on activation, the 5-HT3 receptors induce Ca2+ influx. Whereas postsynaptic 5-HT3 receptors induce depolarization, being permeant to Na+ and K+, the basis of presynaptic 5-HT3 receptor-induced calcium influx is unknown. Because the small size of isolated brain nerve terminals (synaptosomes) precludes electrophysiological measurements, confocal microscopic imaging has been used to detect calcium influx into them. Application of 100 nM 1-(m-chlorophenyl)biguanide (mCPBG), a highly specific 5-HT3 receptor agonist, induced increases in internal free Ca2+ concentration ([Ca2+]i) and exocytosis in a subset of corpus striatal synaptosomes. mCPBG-induced increases in [Ca2+]i ranged from 1.3 to 1.6 times over basal values and were inhibited by 10 nM tropisetron, a potent and highly specific 5-HT3 receptor antagonist, but were insensitive to the removal of external free Na+ (substituted with N-methyl-d -glucamine), to prior depolarization induced on addition of 20 mM K+, or to voltage-gated Ca2+ channel blockade by 10 µM Co2+/Cd2+ or by 1 µMω-conotoxin MVIIC/1 µMω-conotoxin GVIA/200 nM agatoxin TK. In contrast, the Ca2+ influx induced by 5-HT3 receptor activation in NG108-15 cells by 1 µM mCPBG was substantially reduced by 10 µM Co2+/Cd2+ and was completely blocked by 1 µM nitrendipine, an L-type Ca2+ channel blocker. We conclude that in contrast to the perikaryal 5-HT3 receptors, presynaptic 5-HT3 receptors appear to be uniquely calcium-permeant.  相似文献   

12.
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.  相似文献   

13.
Ca2+-activated K+ channels play an important role in Ca2+ signal transduction and may be regulated by mechanisms other than a direct effect of Ca2+. Inside-out patches of the apical membrane of confluent transformed rabbit cortical collecting duct cells cultured on collagen were subjected to patch clamp analysis. Two types of K+ channel, of medium and high conductance, were observed. The latter channel was characterized by a K+/Na+ permeability ratio of 10, an inwardly rectified current, a conductance of 80 pS at 0 mV, and an open probability dependent on both voltage and Ca2+. Guanosine 5-triphosphate (GTP) but not a guanosine 5-diphosphate (GDP) analogue, adenosine 5-triphosphate (ATP), cytidine 5-triphosphate (CTP), or inosine 5-triphosphate (ITP), inhibited the activity of this Ca2+-activated K+ channel. The inhibitory effect of GTP was dose dependent, with a 50% inhibitory concentration of 10–5 m in the absence of Mg2+. In the presence of Mg2+ (1 mm), which is required for the binding of GTP to G proteins, the 50% inhibitory concentration decreased to 3×10–12 m. Pertussis toxin or cholera toxin (each at 10 ng/ml) did not prevent the inhibitory effect of GTP. After removal of GTP from the medium bathing an inhibited channel, subsequent application of Ca2+ failed to activate the channel. Ca2+-activated K+ channels of smooth muscle cells and proximal tubule cells did not respond to GTP. Thus, the Ca2+-activated K+ channel in the apical membrane of collecting duct cells is inhibited by GTP, which appears to exert its effect via a G protein that is insensitive to both cholera and pertussis toxins.  相似文献   

14.
The effects of ryanodine, 9,21-didehydroryanodine and 9,21-didehydroryanodol on two types of K+ channel (a maxi, Ca2+-activated, 170 pS channel (BK channel) and an inward rectifier, stretch-sensitive channel of 35 pS conductance (IK channel) found in the plasma membrane of locust skeletal muscle have been investigated. 10–9M-10–5M ryanodine irreversibly induced a dose-dependent reduction of the reversal potential (Vrev) of the currents of both channels, i.e. from 60 mV in the absence of the alkaloid to 15 mV for 10–5M ryanodine, measured under physiologically normal K+ and Na+ gradients. In both cases the change in the ionic selectivity was Ca2+-independent. 9,21-didehydroryanodine and 9,21-didehyroryanodol also reduced Vrev, but only to 35 mV during application of 10–5M of these compounds. Additionally, 9,21-didehydroryanodine reversibly diminished the conductances of the two K+ channels. To test the hypothesis that ryanoids increase Na+ permeability by enlarging the K+ channels, the channels were probed with quaternary ammonium ions during ryanoid application. When applied to the cytoplasmic face of inside-out patches exised from locust muscle membrane, TEA blocked the K+ channels in a voltage-dependent fashion. The dissociation constant (Kd(0)) for TEA block of the IK channel was reduced from 44 mM to 1 mM by 10–7 M ryanodine, but the voltage-dependence of the block was unaffected. Qualitatively similar data were obtained for the BK channel. Ryanodine had no effect on the Kd for cytoplasmically-applied TMA. However, the voltage-dependence for TMA block was increased for both K+ channels, from 0.47 to 0.8 with 10–6M ryanodine. The effects of ryanodine on TEA and TMA block support the hypothesis that ryanodine enlarges the K+ channels so as to facilitate permeation of partially hydrated Na+ ions.  相似文献   

15.
Large-conductance Ca2+-activated K+ (BKCa) channels play a critical role in regulating the cellular excitability in response to change in blood flow. It has been demonstrated that vascular BKCa channel currents in both humans and rats are increased after exercise training. This up-regulation of the BKCa channel activity in arterial myocytes may represent a cellular compensatory mechanism of limiting vascular reactivity to exercise training. However, the underlying mechanisms are not fully understood. In the present study, we examined the single channel activities and kinetics of the BKCa channels in rat thoracic aorta smooth muscle cells. We showed that exercise training significantly increased the open probability (Po), decreased the mean closed time and increased the mean open time, and the sensitivity to Ca2+ and voltage without altering the unitary conductance and the K+ selectivity. Our results suggest a novel mechanism by which exercise training increases the K+ currents by changing the BKCa channel activities and kinetics.  相似文献   

16.

Background

Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.

Methods

Quadruplicate ex vivo human chorionic plate arterial rings were used in all studies. Series 1 and 2 examined the role of the K+ channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K+ (KCa++) channels (Series 1A+B) or glibenclamide, which blocks the ATP sensitive K+ (KATP) channel (Series 2), modulated sevoflurane-mediated vasodilation. Series 3 – 5 examined the role of the Ca++ channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca++ channel (Series 3), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca++ channels (Series 4A+B), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca++ channel (Series 5A+B), modulated sevoflurane-mediated vasodilation.

Results

Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the KCa++ and KATP channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K+ channels. Blockade of the voltage-operated Ca++channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca++channels did not alter sevoflurane vasodilation.

Conclusion

Sevoflurane appears to block chorionic arterial KCa++ and KATP channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the in vitro foeto-placental circulation.  相似文献   

17.
《Life sciences》1995,56(15):PL291-PL298
The aim of this study was to examine the effects of MCI-154, a new positive inotropic agent with vasodilating properties, on the Ca2+-activated K+ channel (KCa channel) of vascular smooth muscle cells. Cultured smooth muscle cells from a porcine coronary artery were studied using the patch-clamp technique. Extracellular application of 100 μM MCI-154 activated the KCa channel in intact cell-attached patch configurations. In excised inside-out patch configurations, application of 100μM MCI-154 to the cytosolic side activated the KCa channel directly, suggesting that the Ca2+ sensitivity of the KCa channel itself is modulated. Though extracellular application of 100 μM amrinone, a phosphodiesterase inhibitor, activated the KCa channel in the cell-attached patch configurations, application of 100 μm amrinone to the cytosolic side could not activate the KCa channel in inside-out patch configurations. These results indicate that different from amrinone, MCI-154 can modulate Ca2+ sensitivity of the KCa channel in vascular smooth muscle cells.  相似文献   

18.
We delineated the role of Ca2+-activated K+ channels in the phenomenon of spike frequency adaptation (SFA) exhibited by neurons in the caudal region of nucleus tractus solitarius (cNTS) using intracellular recording coupled with the current-clamp technique in rat brain slices. Intracellular injection of a constant depolarizing current evoked a train of action potentials whose discharge frequency declined rapidly to a lower steady-state level of irregular discharges. This manifested phenomenon of SFA was found to be related to extracellular Ca2+. Low Ca2+ (0.25 mM) or Cd2+ (0.5 mM) in the perfusing medium resulted in a significant increase in the adaptation time constant (adap) and an appreciable reduction in the percentage adaptation of spike frequency (Fadap). In addition, the evoked discharges were converted from an irregular to a regular pattern, accompanied by a profound increase in mean firing rate. Intriguingly, similar alterations in adap, Fadap, discharge pattern and discharge rate were elicited by apamin (1 µM), a selective blocker for small-conductance Ca2+-activated K+ (SK) channels. On the other hand, charybdotoxin (0.1 µM), a selective blocker for large-conductance Ca2+-activated K+ channels, was ineffective. Our results suggest that SK channels of cNTS neurons may subserve the generation of both SFA and irregular discharge patterns displayed by action potentials evoked with a prolonged depolarizing current.  相似文献   

19.
Summary A human intestinal epithelial cell line (Intestine 407) is known to retain receptors for intestinal secretagogues such as acetylcholine (ACh), histamine, serotonin (5-HT) and vasoactive intestinal peptide (VIP). The cells were also found to possess separate receptors for secretin and ATP, the stimulation of which elicited transient hyperpolarizations coupled to decreased membrane resistances. These responses were reversed in polarity at the K+ equilibrium potential. The hyperpolarizing responses to six agonists were reversibly inhibited by quinine or quinidine. By means of Ca2+-selective microelectrodes, increases in the cytosolic free Ca2+ concentration were observed in response to individual secretagogues. The time course of Ca2+ responses coincided with that of hyperpolarizing responses. The responses to ACh and 5-HT were abolished by a reduction in the extracellular Ca2+ concentration down to pCa 7 or by application of Co2+. Thus, in Intestine 407 cells, not only the intestinal secretagogues, which are believed to act via increased cytosolic Ca2+ (ACh, 5-HT and histamine), but also those which elevate cyclic AMP (VIP, secretin and ATP) induce increases in cytosolic Ca2+, thereby activating the K+ conductance. It is likely that the origin of increased cytosolic Ca2+ is mainly extracellular for ACh- and 5-HT-induced responses, whereas histamine, VIP, secretin and ATP mobilize Ca2+ from the internal compartment.  相似文献   

20.
Summary Ionic channels in a human monocyte cell line (U937) were studied with the inside-out patch-clamp technique. A Ca2+-activated K+ channel and three Cl-selective channels were observed. The Ca2+-activated K+ channel had an inward-rectifying current-voltage relationship with slope conductance of 28 pS, and was not dependent on membrane potential. Among the three Cl channels, and outward-rectifying 28-pS channel was most frequently observed. The permeability ratio (Cl/Na+) was 4–5 and CH3SO 4 was also permeant. The channel became less active with increasing polarizations in either direction, and was inactive beyond ±120 mV. The channel, observed as bursts, occasionally had rapid events within the bursts, suggesting the presence of another mode of kinetics. Diisothiocyanatostilbene-disulfonic acid (DIDS) blocked the channel reversibly in a dose-dependent manner. The second 328-pS Cl channel had a linear currentvoltage relationship and permeability ratio (Cl/Na+) of 5–6. This channel became less active with increasing polarizations and inactive beyond ±50 mV. DIDS blocked the channel irreversibly. The channel had multiple subconductance states. The third 15-pS Cl channel was least frequently observed and least voltage sensitive among the Cl channels. Intracellular Ca2+ or pH affected none of the three Cl channels. All three Cl channels had a latent period before being observed, suggesting inhibitory factor(s) presentin situ. Activation of the cells with interferon-, interferon-A or 12-O-tetradecanoylphorbol-13-acetate (TPA) caused no change in the properties on any of the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号