首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways.

Methodology/Principal Findings

In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death.

Conclusion/Significance

Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.  相似文献   

2.
Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.  相似文献   

3.
4.
Degeneration of the human retinal pigmented epithelium (hRPE) is involved in several eye disorders such as age-related macular degeneration (AMD). In this study, we investigated the protective effect of IGF-1 on human primary cultured RPE cells and its underlying mechanism. IGF-1 dose- and time-dependently promoted the survival of RPE cells from serum deprivation. Western blot showed that IGF-1 stimulated the activation of the PI3K/Akt and MAPK pathways in hRPE. Inhibition of the PI3K/Akt pathway by the PI3K-specific inhibitor, LY294002 or inhibition of Akt by Akt-specific inhibitors Akt inhibitor VIII or SN-38, or downregulation Akt with siRNA specific for Akt blocked the effect of IGF-1 on hRPE. In contrast, blockade of the MAPK pathway with a specific inhibitor PD98059 had no effect. Interestingly, vitreous IGF-1 injection reversed the inhibitory effect of light exposure (a dry AMD model) on both a wave and b wave. Immunocytochemistry showed that vitreous IGF-1 injections promoted the survival of RPE cells in rat retina and the expression of RPE65 in RPE cells from light injury. These results indicate that IGF-1 is able to protect hRPE cell from different insults in vivo and in vitro. Further detailed studies may lead the way to a therapeutic intervention for retinal diseases in which cell death is an underlying contributory mechanism.  相似文献   

5.
Biological Trace Element Research - Iron accumulation plays a major role in neuronal cell death which has severe effects on mental health like neurodegenerative disorders. The present work aims to...  相似文献   

6.
目的:探讨对微管相关抗癌药物诱导凋亡不敏感的胃癌细胞是否发生非凋亡形式的细胞死亡,并进一步明确自噬和自噬性细胞死亡的存在。方法:Annexin V/PI双染用流式细胞仪和MTT法分别检测紫杉醇、长春新碱诱导SGC-7901及BGC-823细胞的凋亡率和总死亡率,死细胞DAPI染色荧光显微镜检测非凋亡性细胞死亡,吖啶橙染色流式细胞仪和荧光显微镜分别定量、定性检测自噬和自噬性细胞死亡的存在。结果:紫杉醇和长春新碱可以诱导凋亡不敏感胃癌细胞BGC-823出现非凋亡性细胞死亡,处理BGC-823细胞早期(24h内)即可出现明显的细胞自噬性变化,紫杉醇诱导的自噬高峰期出现在药物作用3h-6h,长春新碱诱导的自噬高峰期出现在药物作用24h,自噬性细胞死亡存在并可能是药物诱导的非凋亡性细胞死亡的主要形式。结论:微管相关抗癌药物紫杉醇和长春新碱可以诱导凋亡不敏感胃癌细胞BGC-823自噬及自噬性细胞死亡,可能为提高胃癌的化疗敏感性提供新的思路。  相似文献   

7.
线粒体途径是细胞凋亡的重要途径之一. 在特定的刺激下,例如高糖条件,可以通过caspase依赖性和非依赖性两种途径诱导多种细胞凋亡.但线粒体凋亡途径在高糖引起成骨细胞凋亡中所起的作用,目前尚不清楚.本研究证明,高糖可以通过线粒体凋亡途径诱导成骨细胞凋亡.Annexin V-FITC/PI流式细胞学检测显示,高糖可诱导MC3T3-E1细胞凋亡.Western印迹检测发现,不同浓度D-葡萄糖(11,22,33 mmol/L)可以引起线粒体中Bax蛋白表达的增加,使Bax蛋白由细胞质中易位到线粒体,激活了线粒体凋亡途径.JC-1荧光探针检测证实,高糖处理成骨细胞后,线粒体膜电位明显降低,表明线粒体途径被激活.而细胞质中的细胞色素c、凋亡诱导因子(AIF)表达增加,细胞色素c和AIF从线粒体中释放到细胞质中,释放到细胞质中的细胞色素c使caspase-3、caspase-9剪切活化,从而激活了caspase依赖性凋亡途径.因此,线粒体凋亡途径可能是高糖诱导成骨细胞凋亡过程中一个重要的途径.  相似文献   

8.
It is increasingly recognized that the tumor microenvironment plays a critical role in the initiation and progression of lung cancer. In particular interaction of cancer cells, macrophages, and inflammatory response in the tumor microenvironment has been shown to facilitate cancer cell invasion and metastasis. The specific molecular pathways in macrophages that immunoedit tumor growth are not well defined. Triggering receptor expressed on myeloid cells 1 (TREM-1) is a member of the super immunoglobulin family expressed on a select group of myeloid cells mainly monocyte/macrophages. Recent studies suggest that expression of TREM-1 in tumors may predict cancer aggressiveness and disease outcomes in liver and lung cancer however the mechanism of TREM-1 expression in the setting of cancer is not defined. In this study we demonstrate that tumor tissue from patients with non-small cell lung cancer show an increased expression of TREM-1 and PGE2. Immunohistochemistry and immunofluorescence confirmed that the expression of TREM-1 was selectively seen in CD68 positive macrophages. By employing an in vitro model we confirmed that expression of TREM-1 is increased in macrophages that are co-cultured with human lung cancer cells. Studies with COX-2 inhibitors and siCOX-2 showed that expression of TREM-1 in macrophages in tumor microenvironment is dependent on COX-2 signaling. These studies for the first time define a link between tumor COX-2 induction, PGE2 production and expression of TREM-1 in macrophages in tumor microenvironment and suggest that TREM-1 might be a novel target for tumor immunomodulation.  相似文献   

9.
10.
Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and “COMPARE-negative” profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death mechanisms in apoptotic-resistant cancer cells.  相似文献   

11.
Neurochemical Research - The antioxidant, anti-inflammatory, and anticancer activities of Withania somnifera (WS) are known for a long time. This study was aimed to examine whether WS also...  相似文献   

12.

Background

Current chemotherapeutic agents based on apoptosis induction are lacking in desired efficacy. Therefore, there is continuous effort to bring about new dimension in control and gradual eradication of cancer by means of ever evolving therapeutic strategies. Various forms of PCD are being increasingly implicated in anti-cancer therapy and the complex interplay among them is vital for the ultimate fate of proliferating cells. We elaborated and illustrated the underlying mechanism of the most potent Andrographolide analogue (AG–4) mediated action that involved the induction of dual modes of cell death—apoptosis and autophagy in human leukemic U937 cells.

Principal Findings

AG–4 induced cytotoxicity was associated with redox imbalance and apoptosis which involved mitochondrial depolarisation, altered apoptotic protein expressions, activation of the caspase cascade leading to cell cycle arrest. Incubation with caspase inhibitor Z-VAD-fmk or Bax siRNA decreased cytotoxic efficacy of AG–4 emphasising critical roles of caspase and Bax. In addition, AG–4 induced autophagy as evident from LC3-II accumulation, increased Atg protein expressions and autophagosome formation. Pre-treatment with 3-MA or Atg 5 siRNA suppressed the cytotoxic effect of AG–4 implying the pro-death role of autophagy. Furthermore, incubation with Z-VAD-fmk or Bax siRNA subdued AG–4 induced autophagy and pre-treatment with 3-MA or Atg 5 siRNA curbed AG–4 induced apoptosis—implying that apoptosis and autophagy acted as partners in the context of AG–4 mediated action. AG–4 also inhibited PI3K/Akt/mTOR pathway. Inhibition of mTOR or Akt augmented AG–4 induced apoptosis and autophagy signifying its crucial role in its mechanism of action.

Conclusions

Thus, these findings prove the dual ability of AG–4 to induce apoptosis and autophagy which provide a new perspective to it as a potential molecule targeting PCD for future cancer therapeutics.  相似文献   

13.
Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B1 and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture.  相似文献   

14.
Eupatorin is a naturally occurring flavone that inhibits cell proliferation in human tumor cells. Here we demonstrate that eupatorin arrests cells at the G2-M phase of the cell cycle and induces apoptotic cell death involving activation of multiple caspases, mitochondrial release of cytochrome c and poly(ADP-ribose) polymerase cleavage in human leukemia cells. This flavonoid induced the phosphorylation of members of the mitogen-activated protein kinases and cell death was attenuated by inhibition of c-jun N-terminal kinases/stress activated protein kinases. Eupatorin-induced cell death is mediated by both the extrinsic and the intrinsic apoptotic pathways and through a mechanism dependent on reactive oxygen species generation.  相似文献   

15.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and accumulation of the abnormal form of the scrapie prion protein (PrP). Rutin is a flavonoid that occurs naturally in plant-derived beverages and foods and is used in traditional and folkloric medicine worldwide. In the present study, we evaluated the protective effects of rutin against PrP fragment (106–126)-induced neuronal cell death. Rutin treatment blocked PrP(106–126)-mediated increases in reactive oxygen species production and nitric oxide release and helped slowing the decrease of neurotrophic factors that results from PrP accumulation. Rutin attenuated PrP(106–126)-associated mitochondrial apoptotic events by inhibiting mitochondrial permeability transition and caspase-3 activity and blocking expression of the apoptotic signals Bax and PARP. Additionally, rutin treatment significantly decreased the expression of the death receptor Fas and its ligand Fas-L. Overall, our results demonstrated that rutin protects against the neurodegenerative effects of prion accumulation by increasing production of neurotropic factors and inhibiting apoptotic pathway activation in neuronal cells. These results suggested that rutin may have clinical benefits for prion diseases and other neurodegenerative disorders.  相似文献   

16.
17.
《生命科学研究》2015,(5):426-431
钙网蛋白(calreticulin,CRT)是介导肿瘤细胞发生免疫原性死亡的关键性信号分子,在某些理化因素诱导肿瘤细胞发生凋亡的过程中,内质网上的CRT迅速转位到细胞膜上。作为一种特异的信号分子,凋亡肿瘤细胞膜上的CRT能介导吞噬细胞对凋亡肿瘤细胞的识别和吞噬。目前有关免疫原性肿瘤细胞死亡的实验数据大多由动物细胞和动物活体实验得到,人肿瘤细胞在发生免疫原性细胞死亡时,是否也具有CRT膜转位这样的分子事件还需要进一步探讨。研究分析了3种临床常用的肿瘤化疗药物(柔红霉素、长春新碱、顺铂)对人前列腺癌PC3细胞CRT亚细胞定位的影响,及其在介导肿瘤细胞免疫原性死亡中的作用。在对比分析的3种临床抗肿瘤药物中,柔红霉素和顺铂可诱导人前列腺癌PC3细胞发生凋亡,但仅柔红霉素处理的PC3细胞膜上CRT的表达量显著增加。膜上高表达CRT的PC3细胞能更有效地被吞噬细胞吞噬。结果表明,柔红霉素作为抗肿瘤药物,能诱导敏感人肿瘤细胞的免疫原性细胞死亡。  相似文献   

18.
Whereas it is now clear that human bone marrow stromal cells (BMSCs) can be immunosuppressive and escape cytotoxic lymphocytes (CTLs) in vitro and in vivo, the mechanisms of this phenomenon remain controversial. Here, we test the hypothesis that BMSCs suppress immune responses by Fas-mediated apoptosis of activated lymphocytes and find both Fas and FasL expression by primary BMSCs. Jurkat cells or activated lymphocytes were each killed by BMSCs after 72 h of co-incubation. In comparison, the cytotoxic effect of BMSCs on non-activated lymphocytes and on caspase-8(−/−) Jurkat cells was extremely low. Fas/Fc fusion protein strongly inhibited BMSC-induced lymphocyte apoptosis. Although we detected a high level of Fas expression in BMSCs, stimulation of Fas with anti-Fas antibody did not result in the expected BMSC apoptosis, regardless of concentration, suggesting a disruption of the Fas activation pathway. Thus BMSCs may have an endogenous mechanism to evade Fas-mediated apoptosis. Cumulatively, these data provide a parallel between adult stem/progenitor cells and cancer cells, consistent with the idea that stem/progenitor cells can use FasL to prevent lymphocyte attack by inducing lymphocyte apoptosis during the regeneration of injured tissues.Human bone marrow stromal cells (BMSCs)2 (also referred to as mesenchymal stem cells (MSCs)) (1) contain a subset of multipotent, non-hematopoietic stem/progenitor cells. BMSCs can differentiate into hematopoiesis-supporting stromal tissue, adipocytes, osteoblasts, and chondrocytes (2, 3). In addition, they may be able to transdifferentiate into hepatocytes, myocytes, neuroectodermal cells, and endothelial cells, (46) although proof of such differentiation is not definitive to date. BMSCs have immunosuppressive potential, as recently demonstrated in both in vitro (7) and in vivo (8, 9) systems, including clinical studies (10, 11). However, the mechanisms by which BMSCs suppress immune responses are unresolved. Soluble factor-mediated immunosuppressive effects are beginning to come to light, (10, 12), and in addition there are as yet unexplained effects of cell-to-cell contact.In the present study, we hypothesize that BMSC-mediated cytotoxicity of lymphocytes involves the FasL-activated apoptotic machinery. FasL is a type II transmembrane protein belonging to the tumor necrosis factor (TNF) family. FasL interacts with its receptor, Fas (CD95/APO-1) and triggers a cascade of subcellular events culminating in apoptotic cell death. FasL and Fas are key regulators of apoptosis in the immune system. In addition, FasL is expressed by cells in immune-privileged sites, such as cancer cells, neurons, eyes, cytotrophoblasts of the placenta, and reproductive organs (1317). In neurons, FasL expression specifically protects against T cell-mediated cytotoxicity (16).The discovery that FasL is also expressed by a variety of tumor cells raises the possibility that FasL may mediate immune privilege in human tumors (18). Activated T cells expressing Fas are sensitive to Fas-mediated apoptosis. Thus, up-regulation of FasL expression by tumor cells may enable tumorigenesis by targeting apoptosis in infiltrating lymphocytes. In the present work, we show that BMSCs can mediate immunosuppressive activity by FasL-induced killing of activated lymphocytes. Thus, BMSCs have properties of immune-privileged cells.  相似文献   

19.
Background: Helicobacter hepaticus, the prototype for enterohepatic Helicobacter species, colonizes the lower intestinal and hepatobiliary tracts of mice and causes typhlocolitis, hepatitis, and hepatocellular carcinoma in susceptible mouse strains. Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus. CDT of several Gram‐negative bacteria is associated with double‐stranded DNA breaks resulting in cell cycle arrest and death of a wide range of eukaryotic cells in vitro. We previously observed H. hepaticus CDT (HhCDT) mediated apoptosis in INT407 cells. However, the exact mechanism for the induction of the apoptotic pathway by HhCDT is unknown. The objective of this study was to identify the apoptotic signaling pathway induced by HhCDT in INT407 cells. Materials and Methods: INT407 cells were incubated with or without recombinant HhCDT for 0–72 hours. H2AX phosphorylation and apoptotic parameters were analyzed. Results: H2AX was phosphorylated 24 hours postexposure to HhCDT. Expression of pro‐apoptotic Bax protein was upregulated after 24 hours, while Bcl2 expression decreased. Cytochrome c was released from mitochondria after 12–24 hours of exposure. Concurrently, caspase 3/7 and 9 were activated. However, pretreatment of INT407 cells with caspase inhibitor (Z‐VAD‐FMK) inhibited the activation of caspase 3/7 and 9. Significant activity of caspase 8 was not observed in toxin treated cells. Activation of caspase 3/7 and caspase 9 confirms the involvement of the mitochondrial apoptotic pathway in HhCDT‐treated cells. Conclusion: These findings show, for the first time, the ability of HhCDT to induce apoptosis via the mitochondrial pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号