首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high‐fat/high‐sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.  相似文献   

2.
3.
A metabolomic approach was applied to a mouse model of starvation-induced hepatic steatosis. After 24 h of fasting it appears that starvation reduced the phospholipids (PL), free cholesterol (FC), and cholesterol esters (CE) content of low-density lipoproteins (LDL). In liver lipid profiles major changes were observed using different techniques. High performance thin layer chromatography (HPTLC)-measurements of liver-homogenates indicated a significant rise of FC with 192%, triacylglycerols (TG) with 456% and cholesterol esters (CE) with 268% after 24 h of starvation in comparison with the control group. Reversed phase liquid chromatography coupled to mass spectrometry measurements (LC-MS) of liver homogenate indicated that the intensity of Phosphatidylcholine (PC) in the 24-h starvation group dropped to 90% of the value in the control group while the intensity of CE and TG increased to 157% and 331%, respectively, of the control group. Interestingly, a 49:4-TG with an odd number of C atoms appeared during starvation. This unique triacylglycerol has all characteristics of a biomarker for detection of hepatic steatosis. These observations indicate that in mammals liver lipid profiles are a dynamic system which are readily modulated by environmental factors like starvation.  相似文献   

4.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

5.
Fructose intake is being discussed as a key dietary factor in the development of nonalcoholic fatty liver disease (NAFLD). Bile acids have been shown to modulate energy metabolism. We tested the effects of bile acids on fructose-induced hepatic steatosis. In C57BL/6J mice treated with a combination of chenodeoxycholic acid and cholic acid (100 mg/kg body weight each) while drinking water or a 30% fructose solution for eight weeks and appropriate controls, markers of hepatic steatosis, portal endotoxin levels, and markers of hepatic lipogenesis were determined. In mice concomitantly treated with bile acids, the onset of fructose-induced hepatic steatosis was markedly attenuated compared to mice only fed fructose. The protective effects of the bile acid treatment were associated with a downregulation of tumor necrosis factor (TNF)α, sterol regulatory element-binding protein (SREBP)1, FAS mRNA expression, and lipid peroxidation in the liver, whereas hepatic farnesoid X receptor (FXR) or short heterodimer partner (SHP) protein concentration did not differ between groups fed fructose. Rather, bile acid treatment normalized occludin protein concentration in the duodenum, portal endotoxin levels, and markers of Kupffer cell activation to the level of water controls. Taken together, these data suggest that bile acids prevent fructose-induced hepatic steatosis in mice through mechanisms involving protection against the fructose-induced translocation of intestinal bacterial endotoxin.  相似文献   

6.
Organic solute transporter (OSTalpha-OSTbeta) is a novel heteromeric bile acid and sterol transporter expressed at the basolateral membranes of epithelium in the ileum, kidney, and liver. To determine whether OSTalpha-OSTbeta undergoes farnesoid X receptor (FXR)-dependent adaptive regulation following cholestatic liver injury, mRNA and protein expression levels were analyzed in patients with primary biliary cirrhosis (PBC) and following common bile duct ligation (CBDL) in rats and Fxr null and wild-type mice. Hepatic OSTalpha and OSTbeta mRNA increased 3- and 32-fold, respectively, in patients with PBC compared with controls, whereas expression of Ostalpha and Ostbeta also increased in the liver of rats and mice following CBDL. In contrast, expression of Ostalpha and Ostbeta mRNA was generally lower in Fxr null mice, and CBDL failed to enhance expression of Ostalpha and Ostbeta compared with wild-type mice. HepG2 cells treated for 24 h with chenodeoxycholic acid, a selective FXR ligand, had higher levels of OSTalpha and OSTbeta mRNA and protein. Increases in OST protein were visualized by confocal microscopy at the plasma membrane. These results indicate that expression of Ostalpha and Ostbeta are highly regulated in response to cholestasis and that this response is dependent on the FXR bile acid receptor.  相似文献   

7.
8.
Proteasome inhibition has recently been demonstrated to inhibit hepatic fibrogenesis in the bile duct-ligated (BDL) mouse by blocking stellate cell NF-kappaB activation. The effect of proteasome inhibition on liver injury, however, is unclear. Our aims were to assess the effect of the proteasome inhibitor bortezomib on liver injury in the BDL mouse. Liver injury was assessed in 7-day BDL mice treated with a single dose of bortezomib on day 4 after bile duct ligation. Despite NF-kappaB inhibition by bortezomib, liver injury and hepatocyte apoptosis were reduced in treated BDL mice. The antiapoptotic effect of bortezomib was likely mediated by an increase in hepatic cellular FLICE inhibitory protein (c-FLIP) levels, a potent antiapoptotic protein. Unexpectedly, numerous mitotic hepatocytes were observed in the bortezomib-treated BDL mice liver specimens. Consistent with this observation, PCNA immunoreactivity and cyclin A protein expression were also increased with bortezomib treatment. Bortezomib therapy was also associated with a decrease in numbers and activation of Kupffer cells/macrophages. In conclusion, these data suggest that the proteasome inhibitor bortezomib reduces hepatocyte injury in the BDL mouse by mechanisms associated with a reduction in hepatocyte apoptosis, a decrease in Kupffer cell/macrophage number and activation, and increased hepatocyte proliferation.  相似文献   

9.
10.
Hepatic steatosis, also known as fatty liver disease, occurs due to abnormal lipid accumulation in the liver. It has been known that gut absorption also plays an important role in the mechanism underlying hepatic steatosis. Conventional in vitro cell culture models have limitations in recapitulating the mechanisms of hepatic steatosis because it does not include the gut absorption process. Previously, we reported development of a microfluidic gut–liver chip that can recapitulate the gut absorption of fatty acids and subsequent lipid accumulation in liver cells. In this study, we performed a series of experiments to verify that our gut–liver chip reproduces various aspects of hepatic steatosis. The absorption of fatty acids was evaluated under various culture conditions. The anti-steatotic effect of turofexorate isopropyl (XL-335) and metformin was tested, and both drugs showed different action mechanisms. In addition, the oxidative stress induced by lipid absorption was evaluated. Our results demonstrate the potential of the gut–liver chip for use as a novel, physiologically realistic in vitro model to study fatty liver disease.  相似文献   

11.
12.
13.
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.  相似文献   

14.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA-approved treatments, but FXR agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR, fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine–conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or high-fat diet and in mouse primary hepatocytes to determine the role of FGFR4 in metabolic processes and hepatic steatosis. Liver-specific FGFR4 silencing increased bile acid production and lowered serum cholesterol. Additionally, we found that high-fat diet–induced liver steatosis and insulin resistance improved following FGFR4 knockdown. These improvements were associated with activation of the FXR-FGF15 axis in intestinal cells, but not in hepatocytes. We conclude that targeting FGFR4 in the liver to activate the intestinal FXR-FGF15 axis may be a promising strategy for the treatment of NAFLD and metabolic dysfunction.  相似文献   

15.
The bile salt export pump (Bsep) mediates the hepatic excretion of bile acids, and its deficiency causes progressive familial intrahepatic cholestasis. The current study aimed to induce bile acid stress in Bsep−/− mice and to test the efficacy of hepatocyte transplantation in this disease model. We fed Bsep−/− and wild-type mice cholic acid (CA) or ursodeoxycholic acid (UDCA). Both CA and UDCA caused cholestasis and apoptosis in the Bsep−/− mouse liver. Wild-type mice had minimal liver injury and apoptosis when fed CA or UDCA, yet had increased proliferative activity. On the basis of the differential cytotoxicity of bile acids on the livers of wild-type and Bsep−/− mice, we transplanted wild-type hepatocytes into the liver of Bsep−/− mice fed CA or CA + UDCA. After 1–6 weeks, the donor cell repopulation and canalicular Bsep distribution were documented. An improved repopulation efficiency in the CA + UDCA-supplemented group was found at 2 weeks (4.76 ± 5.93% vs. 1.32 ± 1.48%, P = 0.0026) and at 4–6 weeks (12.09 ± 14.67% vs. 1.55 ± 1.28%, P < 0.001) compared with the CA-supplemented group. Normal-appearing hepatocytes with prominent nuclear staining for FXR were noted in the repopulated donor nodules. After hepatocyte transplantation, biliary total bile acids increased from 24% to 82% of the wild-type levels, among which trihydroxylated bile acids increased from 41% to 79% in the Bsep−/− mice. We conclude that bile acid stress triggers differential injury responses in the Bsep−/− and wild-type hepatocytes. This strategy changed the balance of the donor–recipient growth capacities and was critical for successful donor repopulation.  相似文献   

16.
17.
18.
Bile acid malabsorption, which in patients leads to excessive fecal bile acid excretion and diarrhea, is characterized by a vicious cycle in which the feedback regulation of bile acid synthesis is interrupted, resulting in additional bile acid production. Feedback regulation of bile acid synthesis is under the control of an endocrine pathway wherein activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), induces enteric expression of the hormone, fibroblast growth factor 15 (FGF15). In liver, FGF15 acts together with FXR-mediated expression of small heterodimer partner to repress bile acid synthesis. Here, we show that the FXR-FGF15 pathway is disrupted in mice lacking apical ileal bile acid transporter, a model of bile acid malabsorption. Treatment of Asbt-/- mice with either a synthetic FXR agonist or FGF15 downregulates hepatic cholesterol 7alpha-hydroxylase mRNA levels, decreases bile acid pool size, and reduces fecal bile acid excretion. These findings suggest that FXR agonists or FGF15 could be used therapeutically to interrupt the cycle of excessive bile acid production in patients with bile acid malabsorption.  相似文献   

19.

Background

Reducing salt intake has been proposed to prevent cardiovascular disease in India. We sought to determine whether salt reductions would be beneficial or feasible, given the worry that unrealistically large reductions would be required, worsening iodine deficiency and benefiting only urban subpopulations.

Methods and Results

Future myocardial infarctions (MI) and strokes in India were predicted with a Markov model simulating men and women aged 40 to 69 in both urban and rural locations, incorporating the risk reduction from lower salt intake. If salt intake does not change, we expect ∼8.3 million MIs (95% CI: 6.9–9.6 million), 830,000 strokes (690,000–960,000) and 2.0 million associated deaths (1.5–2.4 million) per year among Indian adults aged 40 to 69 over the next three decades. Reducing intake by 3 g/day over 30 years (−0.1 g/year, 25% reduction) would reduce annual MIs by 350,000 (a 4.6% reduction; 95% CI: 320,000–380,000), strokes by 48,000 (−6.5%; 13,000–83,000) and deaths by 81,000 (−4.9%; 59,000–100,000) among this group. The largest decline in MIs would be among younger urban men, but the greatest number of averted strokes would be among rural men, and nearly one-third of averted strokes and one-fifth of averted MIs would be among rural women. Only under a highly pessimistic scenario would iodine deficiency increase (by <0.0001%, ∼1600 persons), since inadequate iodized salt access—not low intake of iodized salt—is the major cause of deficiency and would be unaffected by dietary salt reduction.

Conclusions

Modest reductions in salt intake could substantially reduce cardiovascular disease throughout India.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号