首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercury and organomercurial resistance determined by genes on ten Pseudomonas aeruginosa plasmids and one Pseudomonas putida plasmid have been studied with regard to the range of substrates and the range of inducers. The plasmidless strains were sensitive to growth inhibition by Hg(2+) and did not volatilize Hg(0) from Hg(2+). A strain with plasmid RP1 (which does not confer resistance to Hg(2+)) similarly did not volatilize mercury. All 10 plasmids determine mercury resistance by way of an inducible enzyme system. Hg(2+) was reduced to Hg(0), which is insoluble in water and rapidly volatilizes from the growth medium. Plasmids pMG1, pMG2, R26, R933, R93-1, and pVS1 in P. aeruginosa and MER in P. putida conferred resistance to and the ability to volatilize mercury from Hg(2+), but strains with these plasmids were sensitive to and could not volatilize mercury from the organomercurials methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids, in addition, conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate. The other plasmids, FP2, R38, R3108, and pVS2, determined resistance to and decomposition of a range of organomercurials, including methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids also conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate by a mechanism not involving degradation. In all cases, organomercurial decomposition and mercury volatilization were induced by exposure to Hg(2+) or organomercurials. The plasmids differed in the relative efficacy of inducers. Hg(2+) resistance with strains that are organomercurial sensitive appeared to be induced preferentially by Hg(2+) and only poorly by organomercurials to which the cells are sensitive. However, the organomercurials p-hydroxymercuribenzoate, merbromin, and fluorescein mercuric acetate were strong gratuitous inducers but not substrates for the Hg(2+) volatilization system. With strains resistant to phenylmercury and thimerosal, these organomercurials were both inducers and substrates.  相似文献   

2.
A simplified thiourea-based chromatography method, originally developed for methyl and inorganic mercury, was adapted to separate methylmercury (MeHg), ethylmercury (EtHg), and inorganic mercury (HgII) in infants' hair. Samples were weighed and leached with an acidic thiourea solution. Leachates were concentrated on a polymeric resin prior to analysis by Hg-thiourea liquid chromatography/cold vapor atomic fluorescence spectrometry. All but one sample showed small amounts of EtHg, and four of the six analyzed samples had proportionally higher HgII as a percent of total Hg. Breastfed infants from riverine Amazonian communities are exposed to mercury in breast milk (from high levels of maternal sources that include both fish consumption and dental amalgam) and to EtHg in vaccines (from thimerosal). The method proved sensitive enough to detect and quantify acute EtHg exposure after shots of thimerosal-containing vaccines. Based on work with MeHg and HgII, estimated detection limits for this method are 0.050, 0.10, and 0.10 ng g−1 for MeHg, HgII, and EtHg, respectively, for a 20-mg sample. Specific limits depend on the amount of sample extracted and the amount of extract injected.  相似文献   

3.
Binding of metal ions to the heteroatomic sites of proteins is undoubtedly fundamental to their observed physiological effects. In this paper, the interactions of inorganic mercury (Hg2+), methylmercury (MeHg+), ethylmercury (EtHg+), and phenylmercury (PhHg+) with human serum albumin (HSA) were studied from the electrophoretic behaviors, stoichiometry, thermodynamics, and kinetics by using a new hybrid technique, capillary electrophoresis on-line coupled with electrothermal atomic absorption spectrometry (CE-ETAAS), together with the consequent structural information from circular dichroism and Raman spectroscopy. The stoichiometry (mercurial species to HSA) for the interactions of Hg2+, MeHg+, EtHg+, and PhHg+ with HSA was found to be 6:1, 4:1, 4:1, and 3:1, respectively. Two types of binding sites in HSA were observed for the binding of mercurial species with the orders of magnitude of binding constants of 10(7) and 10(6) L mol-1, respectively, showing strong affinity of mercurial species for HSA. The interactions of mercurial species with both types of binding sites in HSA are exothermic and thermodynamically favorable and are both enthalpically and entropically driven. The binding of mercurial species to HSA follows the first-order kinetics for mercurial species and zero-order kinetics for HSA with the apparent activation energy of 57-59 kJ mol-1. Among the four mercurial species examined, only Hg2+ induces the secondary structure transition of HSA. Mercury-HSA adducts are formed mainly through metal-sulfur binding with participation of C=O and/or C-N groups of amino acid residues in HSA molecules. The present work represents the most comprehensive study on the interactions between various mercurial species with HSA and provides new evidence for and insights into the interactions of mercurial species with HSA for further understanding of the toxicological effects of mercurial species.  相似文献   

4.
ObjectiveTo examine the exposure-response relationship between mercury exposure and diabetes in adults, and to explore the possible effect modifications by selenium and omega-3 fatty acids.MethodsBiomarker data (total blood mercury and blood methylmercury) from individuals ≥20 years of age were obtained from the 2005–2018 NHANES. Diabetes was defined through questionnaires, fasting plasma glucose, 2 -h plasma glucose and hemoglobin A1c levels. The exposure-response relationship between mercury exposure and diabetes was assessed with logistic regression and restricted cubic splines.ResultsComparing the highest to lowest quartile of exposure, the multivariable-adjusted odds ratio (95 % CI) of diabetes was 0.76 (0.63−0.92) with total blood mercury and 0.82 (0.66−1.00) with blood methylmercury. The inverse associations between total blood mercury [0.55 (0.40−0.77)] and blood methylmercury [0.61 (0.38−0.97)] and diabetes were observed among individuals having higher intakes of selenium (Pfor interaction<0.05). Trends toward lower odds of diabetes with mercury exposure were mainly confined to individuals having higher intakes of omega-3 fatty acid, but the interactions were not significant. The inverse associations between total blood mercury and blood methylmercury and diabetes remained in sensitivity analyses after excluding patients with hypertension that may change their dietary intake of fish. Exposure-response analyses showed an initial decrease in odds of diabetes followed by a platform or a weaker decrease beyond 3 μg/L of total blood mercury and methylmercury concentrations, respectively.ConclusionsTotal blood mercury and blood methylmercury concentrations were inversely associated with diabetes in adults, and the associations were modified by selenium.  相似文献   

5.
Concentrations of lead, cadmium, methylmercury and total mercury were measured in maternal and umbilical cord blood using graphite atomic absorption spectrometry. Two essential metals, copper and zinc, were also determined using ion chromatography. Lead, copper and zinc were found to be lower in the cord blood, whereas methylmercury and total mercury were higher in cord blood than in maternal blood. Little differences were noted for cadmium in maternal and cord blood. Significant positive correlations were observed between the concentrations in maternal and cord blood with regard to lead (correlation coefficient, r = 0.44), copper (r = 0.34), zinc (r = 0.29), methylmercury (r = 0.44) and total mercury (r = 0.58). These results suggest that, like essential metals, most heavy metals can move rather freely across the human placenta. The potential health effects of heavy metal transfer from mothers to young infants cannot be discounted.  相似文献   

6.
This article reviews literature data concerning the genotoxicity of 29 mercury-containing agents, including laboratory compounds as well as ingredients of preparations used as fungicides, dyes, disinfectants and drugs. A variety of genetic end-points were investigated in bacteria, yeasts, moulds, plants, insects, cultured cells from fishes, rodents or humans, aquatic organisms, amphibians, mammalia and exposed humans. The overall evaluation is quite complex. Mercury compounds failed to induce point mutations in bacteria but often exerted clastogenic effects in eukaryotes, especially by binding SH groups and acting as spindle inhibitors, thereby causing c-mitosis and consequently aneuploidy and/or polyploidy. Inorganic mercury compounds were also found to induce the generation of reactive oxygen species and glutathione depletion in cultured mammalian cells. Although different mercury compounds tended to produce qualitatively comparable genetic effects, which suggests the involvement of a common toxic entity, methylmercury derivatives and other ionizable organomercury compounds were more active in short-term tests than either non-ionizable mercury compounds (e.g., dimethylmercury) or inorganic mercury salts (e.g., mercuric chloride). The results of cytogenetic monitoring in peripheral blood lymphocytes of individuals exposed to elemental mercury or mercury compounds from accidental, occupational or alimentary sources were either negative or borderline or uncertain as to the actual role played by mercury in some positive findings. Both genotoxic and non-genotoxic mechanisms may contribute to the renal carcinogenicity of mercury, which so far has been convincingly demonstrated only in male rodents treated with methylmercury chloride.  相似文献   

7.
1-Octanol/water partition coefficients, [HgII]octanol/[HgII]water, provide a simple but limited model system for aspects of the biological behavior of methylmercury(II) and commonly used organomercury(II) medicinal compounds. In an octanol/water system some widely studied antidotes for mercury poisoning at least partly displace the biological thiols L-cysteine and glutathione from binding to MeHgII at pH 6.9. Addition of the antidote meso-dimercaptosuccinic acid to MeHgII in the presence of glutathione results in formation of metallic mercury. For RHgII derivatives of L-cysteine and glutathione, octanol/water partition coefficients follow the order Ph greater than Et greater than Me. An exceptionally high value for diphenylmercury, compared with PhHgII derivatives of L-cysteine and glutathione, is consistent with reported results of the distribution of mercury compounds in rats. Ethylmercury(II) is partly displaced from thimerosal by L-cysteine and glutathione in the octanol/water system, indicating that the active form of thimerosal in vivo may involve binding of EtHgII to biological ligands.  相似文献   

8.
Methylmercury is a toxic pollutant and is generated by microbial methylation of elemental or inorganic mercury in the environment. Previous study found decreased hepatic MDA levels and urinary mercury levels in methylmercury poisoned rats after sodium selenite treatment. This study further found increased mercury levels in serum samples from methylmercury poisoned rats after selenium treatment. By using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry, three Hg- binding protein fractions and two Se-binding protein fractions were identified with the molecular weight of approximately 21, 40, and 75 kDa and of 40 and 75 kDa, respectively. Elevated mercury level in the 75 kDa protein fraction was found binding with both Hg and Se, which may explain the decreased urinary Hg excretion in MeHg poisoned rats after Se treatment. MALDI-TOF-MS analysis of the serum found that the 75 kDa protein fractions were albumin binding with both Hg and Se and the 21 kDa fraction was Hg- binding metallothionein.  相似文献   

9.
BackgroundMercury, in particular its most toxic form methylmercury, poses a risk to public health. Dietary methylmercury exposure is mainly by fish, and it can vary with fish contamination and by dietary habits of the population. This study aimed to quantify total mercury levels in different fish from Brazil and to estimate Brazilian exposure to methylmercury by fish consumption.MethodsTotal mercury occurrence was investigated in 18 different fish species by atomic absorption spectrometry with thermal decomposition and gold amalgamation. Dietary exposure to methylmercury was estimated by a deterministic method for different groups considering consumption by sex, different Brazilian geographical regions and habitat (rural or urban).ResultsCarnivorous fish showed higher levels of mercury (0.01 to 0.93 mg/kg) compared to non-strictly carnivorous fish (<0.01 to 0.30 mg/kg). Farmed fishes showed significantly lower levels compared to wild fish. Mean Brazilian fish consumption achieves FAO/WHO health recommendation of about two portions of fish per week. However, there is a large difference between fish consumption at urban and rural homes and among Brazilian geographic regions. These differences in consumption impacted estimated methylmercury intake that was higher in the Northern (1.85 μg/kg bw week) and in the Northeastern (0.72 μg/kg bw week) regions and also by rural population (1.08 μg/kg bw week). These values were compared with the toxicological reference dose for neurotoxicity of 1.6 μg/kg bw week.ConclusionEven though total levels of mercury in fish were lower than Brazilian and international legislations, in the Northern Brazilian region methylmercury intake overpassed the toxicological reference dose for neurotoxicity and in rural areas it achieved 68% of this reference dose.  相似文献   

10.
Thimerosal is ethyl mercury based compound which is being used as a preservative in vaccines since decades. Pharmaceutical products and vaccines that contain thimerosal are among the potential source of mercury exposure. Current research was intended to ascertain the reprotoxic effects of thimerosal on rat testes. Twenty-four adult male albino rats were sorted into four groups (n = 6). The first group was a control group. Rats of experimental Group 2, 3 and 4 were treated with various dosages of thimerosal (0.5, 10, 50 mg/kg) respectively. Rats were decapitated after thirty days of trial and different parameters were analyzed. Thimerosal exposure resulted in a significant decrease in antioxidant enzyme activities including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione reductase (GSR) and increased levels of thiobarbituric acid reactive substances (TBARS). Different doses of thimerosal significantly decreased (p < 0.05) the concentration of plasma testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH). Additionally, Daily sperm production (DSP) and efficiency of daily sperm production were significantly reduced followed by thimerosal exposure. Moreover, thimerosal significantly (p < 0.05) decreased the primary spermatocytes, secondary spermatocytes, number of spermatogonia along with spermatids. Thimerosal induced adverse histopathological and morphological changes in testicular tissues such as decreased Leydig cells, diameter of seminiferous tubules, tunica albuginea height and epithelial height. On the other hand, the increase in tubular lumen and interstitial spaces was observed due to thimerosal. These outcomes indicated that thimerosal has potential reprotoxic effects in male albino rats.  相似文献   

11.

Abstract  

Human hair is frequently used as a bioindicator of mercury exposure. We have used X-ray absorption spectroscopy to examine the chemical forms of mercury in human hair samples taken from individuals with high fish consumption and concomitant exposure to methylmercury. The mercury is found to be predominantly methylmercury–cysteine or closely related species, comprising approximately 80% of the total mercury, with the remainder an inorganic thiolate-coordinated mercuric species. No appreciable role was found for selenium in coordinating mercury in hair.  相似文献   

12.
There is a need to interpret neurotoxic studies to help deal with uncertainties surrounding pregnant mothers, newborns and young children who must receive repeated doses of Thimerosal-containing vaccines (TCVs). This review integrates information derived from emerging experimental studies (in vitro and in vivo) of low-dose Thimerosal (sodium ethyl mercury thiosalicylate). Major databases (PubMed and Web-of-science) were searched for in vitro and in vivo experimental studies that addressed the effects of low-dose Thimerosal (or ethylmercury) on neural tissues and animal behaviour. Information extracted from studies indicates that: (a) activity of low doses of Thimerosal against isolated human and animal brain cells was found in all studies and is consistent with Hg neurotoxicity; (b) the neurotoxic effect of ethylmercury has not been studied with co-occurring adjuvant-Al in TCVs; (c) animal studies have shown that exposure to Thimerosal-Hg can lead to accumulation of inorganic Hg in brain, and that (d) doses relevant to TCV exposure possess the potential to affect human neuro-development. Thimerosal at concentrations relevant for infants’ exposure (in vaccines) is toxic to cultured human-brain cells and to laboratory animals. The persisting use of TCV (in developing countries) is counterintuitive to global efforts to lower Hg exposure and to ban Hg in medical products; its continued use in TCV requires evaluation of a sufficiently nontoxic level of ethylmercury compatible with repeated exposure (co-occurring with adjuvant-Al) during early life.  相似文献   

13.
The developed method for mercury speciation analysis has been validated and used for the biomonitoring study of mercury species in human hair. Statistical evaluation proved the reliability of simplified determination of inorganic mercury (difference between total mercury and methylmercury). The results of the validation showed that the method is very well suitable for the determination of both species of mercury in hair for biomonitoring purposes. Non-exposed schoolchildren from three areas in the western and central part of the Czech Republic were chosen as the target group. Tenth of a microgram per gram of the total mercury were generally found in the analyzed hair; values higher than 1 μg g−1 were detected only exceptionally. Comparable results were obtained for two western areas and differed significantly from those for the third area located in the central part of the Czech Republic. In the areas examined, the mean methylmercury contents amounted to 23–46% of the total mercury in the hair. The results confirm an assumption that exposure to mercury does not pose a significant risk to the population in the Czech Republic.  相似文献   

14.
Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.  相似文献   

15.
Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.  相似文献   

16.
Selective and sensitive methods for the determination of the cationic dye and anti-malarial methylene blue in human liquid whole blood, dried whole blood (paper spot), and plasma depending on protein precipitation and cation exchange chromatography coupled to electrospray ionisation (ESI) tandem mass spectrometry (MS/MS) have been developed, validated according to FDA standards, and applied to samples of healthy individuals and malaria patients within clinical studies. Acidic protein precipitation with acetonitrile and trifluoroacetic acid was used for liquid whole blood and plasma. For the extraction of methylene blue from paper spots aqueous acetonitrile was used. Sample extracts were chromatographed on a mixed mode column (cation exchange/reversed phase, Uptisphere MM1) using an aqueous ammonium acetate/acetonitrile gradient. Methylene blue was quantified with MS/MS in the selected reaction monitoring mode using ESI and methylene violet 3RAX as internal standard. Depending on the sample volume (whole blood and plasma 250 microL, and 100 microL on paper spots) the method was linear at least within 75 and 10,000 ng/mL and the limit of quantification in all matrices was 75 ng/mL. Batch-to-batch accuracies of the whole blood, plasma, and paper spot methods varied between -4.5 and +6.6%, -3.7 and +7.5%, and -5.8 and +11.1%, respectively, with corresponding precision ranging from 3.8 to 11.8% CV. After a single oral dose (500 mg) methylene blue concentrations were detectable for 72 h in plasma. The methods were applied within clinical studies to samples from healthy individuals and malaria patients from Burkina Faso.  相似文献   

17.
Mercury (Hg) and selenium (Se) determinations were carried out to evaluate human exposure to those elements through fish consumption in Spain and Portugal. Atomic fluorescence spectroscopy (AFS) was applied in a cold vapor mode for total mercury quantification and was also hyphenated to gas chromatography (GC) to achieve the speciation of organomercurial species in fish samples. The results obtained show the highest concentration of Hg in swordfish and tuna (0.47+/-0.02 and 0.31+/-0.01 microg g-1, respectively), and a much lower concentration in sardine, mackerel shad, and octopus (0.048+/-0.002, 0.033+/-0.001, and 0.024+/-0.001 microg g-1, respectively). The determination of alkyl mercury compounds revealed that 93-98% of mercury in the fish samples was in the organic form. Methylmercury (MeHg) was the only species found in the three fish species with higher mercury content.Total selenium concentration was high in sardine, swordfish, and tuna (0.43+/-0.02, 0.47+/-0.02, and 0.92+/-0.01 microg g-1, respectively), but low in mackerel shad and octopus (0.26+/-0.01 and 0.13+/-0.01 microg g-1, respectively). Speciation of selenium compounds was done by high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry (LC-ICP-MS). Selenomethionine (SeMet) was the only selenium compound identified in the fish samples with higher selenium content.Among the fish species studied, sardine had the most favourable Se:Hg and SeMet:MeHg molar ratios; therefore, its consumption seems to be preferable.  相似文献   

18.
Neurotoxic methylmercury compounds are widespread in the environment and human exposure worries many communities worldwide. Despite numerous studies addressing methylmercury toxicity, the detailed mechanisms underlying its transport and accumulation, especially during early developmental stages, remain unclear. Zebrafish larvae are increasingly used as a model system for studies of vertebrate development and toxicology. Previously, we have identified the lens epithelium as the primary site for cellular mercury accumulation in developing zebrafish larvae (Korbas et al. in Proc Natl Acad Sci USA 105:12108–12112, 2008). Here we present a study on the dynamics of methylmercury accumulation and redistribution in the lens following embryonic and larval exposure to methylmercury l-cysteineate using synchrotron X-ray fluorescence imaging. We observed highly specific accumulation of mercury in the lens that continues well after removal of fish from treatment solutions, thus significantly increasing the post-exposure loading of mercury in the lens. The results indicate that mercury is redistributed from the original target tissue to the eye lens, identifying the developing lens as a major sink for methylmercury in early embryonic and larval stages.  相似文献   

19.
Animals are often exposed to or can ingest heavy metals along with their food. Therefore, we tested whether the hindgut microbiota of Mastotermes darwiniensis possesses the capability to form methyl mercury. The termite M. darwiniensis (Isoptera) was fed with saw dust containing different concentrations of inorganic mercury. Methyl mercury was determined by purge‐and‐trap capillary gas chromatography‐atom fluorescence spectrometry (CGC‐AFS) using ethyl mercury chloride as the internal standard. Total mercury concentrations were determined in the termite tissue by inductive coupled plasma‐isotope dilution mass spectrometry (ICP‐IDMS) after microwave‐assisted digestion. The obtained results showed in vivo methyl mercury production in terrestrial insects for the first time. Desulfovibrio intestinalis isolated from M. darwiniensis was identified as a biomethylating species of the intestinal microbiota.  相似文献   

20.
Differences in metabolism between different mercury species are well recognized. Conclusions that only a minor demethylation of methylmercury takes place in the brain are based primarily on results from short term studies. Results from a number of studies on humans exposed for many years to methylmercury have shown high concentrations of inorganic mercury in the brain in relation to total mercury. Similar evidence is available from studies on monkeys exposed for several years to methylmercury. The results indicate that a significant accumulation of inorganic mercury takes place with time despite the fact that the demethylation rate is slow. Differences in biological halftimes between different mercury species will explain the results. Some data do still need confirmation using different analytical methods. There is reason to believe that the one-compartment model for methyl mercury cannot be used without reservations. Inorganic mercury has a complicated metabolism. After exposure to metallic mercury vapor, inorganic mercury, probably bound to selenium, accumulates in the brain. A fraction of the mercury is excreted, with a long biological halftime. Studies on rats and monkeys indicate that inorganic mercury penetrates the blood-brain barrier only to a very limited-extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号