首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent technological advances in Global Positioning System (GPS) telemetry have allowed the production of lightweight devices suitable for use on small mammals. We evaluated the use of GPS bugs on the European hedgehog (Erinaceus europaeus) in a series of static and field tests. Static tests were conducted in five different rural habitats, affording different degrees of obstruction to satellites. GPS bug performance was good in all habitats (fix success rate (FSR): median ≥?66.8 %; location error (LE): mean ≤?13.5 m), except woodland (FSR?=?37.7 %; LE?=?15.6 m), with performance highest in the open pasture habitat (FSR?=?100 %; LE?=?6.4 m). Field tests revealed mean FSR was high (84.6 %), with the use of nesting habitats, the probable cause of most failed fixes. Despite being more expensive, GPS bugs require less survey effort and substantially lower labour costs with unlimited longevity permitting re-use in multiple seasons. We recommend the use of GPS bugs in the spatial ecological study of any small mammal in a rural environment, providing accurate and unbiased movement data. Further performance testing is recommended before deployment on species inhabiting forested habitats where reduced FSR and high LE support the alternative use of very high frequency tracking.  相似文献   

2.
The recent development of lightweight GPS collars has enabled medium-to-small sized animals to be tracked via GPS telemetry. Evaluation of the performance and accuracy of GPS collars is largely confined to devices designed for large animals for deployment in natural environments. This study aimed to assess the performance of lightweight GPS collars within a suburban environment, which may be different from natural environments in a way that is relevant to satellite signal acquisition. We assessed the effects of vegetation complexity, sky availability (percentage of clear sky not obstructed by natural or artificial features of the environment), proximity to buildings, and satellite geometry on fix success rate (FSR) and location error (LE) for lightweight GPS collars within a suburban environment. Sky availability had the largest affect on FSR, while LE was influenced by sky availability, vegetation complexity, and HDOP (Horizontal Dilution of Precision). Despite the complexity and modified nature of suburban areas, values for FSR ( = 90.6%) and LE ( = 30.1 m) obtained within the suburban environment are comparable to those from previous evaluations of GPS collars designed for larger animals and within less built-up environments. Due to fine-scale patchiness of habitat within urban environments, it is recommended that resource selection methods that are not reliant on buffer sizes be utilised for selection studies.  相似文献   

3.

Background

Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects.

Methodology/Principal Findings

We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%).

Conclusions/Significance

Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium-to-large-sized animals.  相似文献   

4.
Abstract: To determine the spatial resolution of Global Positioning System (GPS) receiver data, rigorous testing is essential. We tested performance of the Lotek 3300 GPS collar for medium-sized mammals (Lotek Engineering, Inc., Newmarket, ON, Canada). To mimic real wildlife monitoring situations, we performed both static (stationary receiver) and mobile tests, placing the receiver collar on a dog. We compared fix locations of the mobile receiver with the actual trajectory described by a portable Trimble high-precision GPS. We determined performance in relation to habitat type and leaf cover. Location error was habitat-dependent, with the best results in open habitat and much poorer ones in forest, particularly coniferous-dominated forest. For both static and mobile tests, location accuracy was higher when the number of satellites contacted was high and when the residual positional dilution of precision (PDOP) value was low. However, location error was highly variable, even for a given PDOP value and a given number of satellites contacted. Finally, mobile collars performed less well than their static counterparts, presumably because of frequent changes of GPS position and orientation.  相似文献   

5.
Remote sensing and geographic information system technologies provide useful data to analyze and map potential wildlife habitats based on physical parameters collected from the field. HADCHA was established with a total area of 20,000 ha, while many more comparable potential wildlife habitats were left outside the area. This study aims to identify and map potential wildlife habitats around HADCHA. Data were collected using Landsat 5 thematic mapper and Sentinel‐2A satellite image, a digital elevation model with 30 m pixels downloaded from ASTER data, and existing GIS Shapefile layers. Thematic Mapper data were downloaded from USGS and processed with Erdas Imagine 2015 software. To evaluate potential wildlife habitat around HADCHA, habitat suitability parameters such as settlement, slope, water, and road buffer zones were used for habitat evaluation and mapping. Accordingly, 16,795 ha of potential wildlife habitats were identified and mapped on westwards of HADCHA. In the new PPWH, about 476.68 ha (2.84%) were moderately suitable, 14,119.17 ha (84.04%) suitable and 2,200.08 ha (13.10%) highly suitable but only 4.2 ha (0.02%) identified as unsuitable. Legal protection of the PPWH around HADCHA could increase the conservation of African buffalo, other mammals, and their habitats. While the mapped potential wildlife habitats had the potential to be parts of HADCHA, it was neglected and has not yet obtained conservation attention. The finding appeals for legal protection of the PPWH and expansion of HADCHA, which could maximize the conservation efforts taken to wild animals of the area. Neglecting this potential wildlife habitat for a long period of time exposed African buffalo and other large‐sized mammals to illegal hunting practices. Policymakers and conservationists shall revise and design the future action plan of HADCHA on how to expand the current‐controlled hunting area and maximize revenue generation from African buffalo and other potential trophy species of the area.  相似文献   

6.
The location performance of a global positioning system (GPS) collar was assessed for different habitats and geographical areas. We tested the effects of habitat features, antenna position, movement, and fix interval on location performance around Mount Fuji, a single peak surrounded by wide and flat areas. Fix rate decreased from 100% in open flat areas to 53% under sloped dense canopy. The openness (the actual available sky, i.e., the percentage of a radio collar exposed to the sky when part of the collar is blocked due to terrain and vegetation) and canopy closure affected location accuracy and most other performance parameters. All nine habitat features except for available sky (theoretical, due to terrain) influenced location time. Any combination of obstructions between collar and satellite decreased the available number of satellites, the fix rate, increased the location time, and resulted in poorer location (higher DOP, lower 3-D proportion, or greater location error). A horizontal antenna yielded poorer location performance than a vertical one in the forest but not in the open area. Location performance always decreased when moving in forest rather than in open areas. Location performance changed with fix interval. Sixty-minute intervals resulted in a longer location time and a lower DOP than 10-min intervals. Vegetation affected location performance more than topography in the Mount Fuji area. Factors that cause a longer location time will shorten battery life. We suggest that location frequency and duration employed for field research should be decided by considering the aim of the study and the effects of habitat features, animal activity, and fix interval on GPS performance and battery longevity. The strengthened effect of canopy closure during windy weather should be considered for forest-dwelling animals.  相似文献   

7.
ABSTRACT Global Positioning System (GPS) collars have proven to be an efficient tool for studying wildlife. However, this technique generally requires great investment in material, which notwithstanding its possible cost-effectiveness, is still beyond the means of most of the scientific community in developing countries. We developed and applied a low-cost GPS harness system placed on pampas deer (Ozotoceros bezoarticus) in the Central Pantanal of Brazil and compared costs of our technique to other commonly manufactured GPS collar systems. Of the 19 GPS harness attached to deer, 8 failed to obtain data series. For the remaining 11 animals, we stored 31,596 locations at 5-minute and 10-minute fix interval schedules (<120 days of continuous monitoring). Monitoring period of each animal lasted from 4.5 days to 17.4 days. Location error tested with a stationary GPS receiver was >3.7 m for 95% of locations. Rate of fixes acquired on the programmed schedule after correcting for errors was 98.5%. Compared to the 4 most used GPS radiocollar manufacturers, cost per fix of the GPS harness we developed was >50% of the cost per fix of the cheapest available product, although our modified device was heavier than all available products for medium-sized deer. Our approach was cost-effective to generate reliable information about activity patterns of pampas deer and may represent an alternative technique, especially for researchers in underdeveloped countries.  相似文献   

8.
Abstract: Global positioning system (GPS) collars are changing the face of wildlife research, yet they still possess biases such as habitat-induced fix-rate bias, which is a serious concern for habitat selection studies. We studied GPS bias in the Central Canadian Rockies, a critical area for wildlife conservation, to provide a statistical approach to correct GPS habitat bias for habitat selection studies using GPS collars. To model GPS habitat bias we deployed 11 different collars from 3 brands of GPS collars (Advanced Telemetry Systems [ATS], Asanti, MN; LOTEK Engineering Ltd., Newmarket, ON, Canada; and Televilt, Lindesberg, Sweden) in a random-stratified design at 86 sites across habitat and topographic conditions. We modeled the probability of obtaining a successful location, PFIX, as a function of habitat, topography, and collar brand using mixed-effects logistic regression in an information theoretic approach. For LOTEK collars, we also investigated the effect of 8 and 12 GPS channels on fix rate. The ATS collars had the highest overall fix rates (97.4%), followed by LOTEK 12 channel (94.5%), LOTEK 8 channel (85.6%), and Televilt (82.3%). Sufficient model selection uncertainty existed to warrant model averaging for logistic regression PFIX models. Collar brand influenced fix rate in all PFIX models: fix rates for ATS and LOTEK 12 channel were not statistically different, whereas LOTEK 8 channel receivers had intermediate fix rates, and Televilt had the lowest. Fix rate was reduced in aspen stands, closed coniferous stands, and sites in narrow mountainous valleys but was higher on upper mountain slopes. Slight discrepancies between fix rates from field trials and observed species fix rates (wolf [Canis lupus] and elk [Cervus elaphus]) suggest uncorrected behavioral or movement-induced bias similar to other recent studies. Regardless, the strong habitat-induced bias in GPS fix rates confirms that in our study area habitat effects are critical, especially for poorer performance brands. Based on previous studies of effects of the amount of bias on inferences, our results suggest correction for GPS bias should be mandatory for Televilt collars in the Canadian Rockies, optional for LOTEK (dependent on the no. of channels), and unnecessary for ATS. Thus, our GPS bias model will be useful to researchers using GPS collars on a variety of species throughout the Rocky Mountain cordillera.  相似文献   

9.
Abstract: Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.  相似文献   

10.
ABSTRACT Recent miniaturization and weight reductions of Global Positioning System (GPS) collars have opened up deployment opportunities on a new array of terrestrial animal species, but the performance of lightweight (<90 g) GPS collars has not been evaluated. I examined the success of 42 GPS collars from 3 manufacturers (Televilt/TVP Positioning, AB, Lindesburg, Sweden; Sirtrack Ltd., Havelock North, New Zealand; H.A.B.I.T [HABIT] Research Ltd., Victoria, BC, Canada) in stationary, open-sky conditions and during deployments on brushtail possums (Trichosurus vulpecula), a nocturnal arboreal marsupial. I assessed performance of these collars in terms of technical malfunctions, fix-success rates, battery longevity, and aspects of location quality. Technical malfunctions occurred in >50% of HABIT and Televilt collars, whereas all Sirtrack collars operated normally. Fix-success rates for all brands were significantly higher during stationary tests than when deployed on brushtail possums. HABIT and Televilt brands functioned poorly in field conditions, with success rates of 16.2% and 2.1%, respectively. Sirtrack collars had the highest fix rate when deployed (64.8%). I modified several HABIT collars by changing the GPS antenna location, with a resultant substantial increase in field fix success (92.6%). Most collars ceased working before they reached 50% of their manufacturer-estimated life expectancy. Suboptimal placement of GPS antenna, combined with short satellite acquisition times and long fix intervals, were a likely cause of low fix-success rates and premature battery failures. Researchers wanting to employ lightweight GPS collars must be aware of current limitations and should carefully consider prospects of low fix rates and limited battery lives before deciding whether these units are capable of meeting study objectives.  相似文献   

11.
ABSTRACT Use of Global Positioning System (GPS) telemetry is increasing in wildlife studies and has provided researchers and managers with new insight into animal behavior. However, performance of GPS collars varies and a major concern is the cause of unsuccessful fixes. We examined possible factors causing missed fixes in GPS collars on sympatric free-ranging Eurasian lynx (Lynx lynx) and wolverines (Gulo gulo) in northern Sweden. We tested for effects of species, activity, habitat, individual, and collar on fix rate. Species was the most important factor affecting fix rate. Fix rate of GPS collars on lynx (80%) was almost twice as high as on wolverines (46%). Fix rate decreased during periods of low activity (day beds) for both species. Fix rate also decreased for females (both lynx and wolverine) for a period after they gave birth. We found no effect of proportion of forest within individual home range on fix rate. We conclude that species behavior, characteristics, and activity pattern are important factors affecting fix rate that we recommend be taken into consideration prior to analyzing GPS location data.  相似文献   

12.
The field of habitat ecology has been muddled by imprecise terminology regarding what constitutes habitat, and how importance is measured through use, selection, avoidance and other bio-statistical terminology. Added to the confusion is the idea that habitat is scale-specific. Despite these conceptual difficulties, ecologists have made advances in understanding ‘how habitats are important to animals’, and data from animal-borne global positioning system (GPS) units have the potential to help this clarification. Here, we propose a new conceptual framework to connect habitats with measures of animal performance itself—towards assessing habitat–performance relationship (HPR). Long-term studies will be needed to estimate consequences of habitat selection for animal performance. GPS data from wildlife can provide new approaches for studying useful correlates of performance that we review. Recent examples include merging traditional resource selection studies with information about resources used at different critical life-history events (e.g. nesting, calving, migration), uncovering habitats that facilitate movement or foraging and, ultimately, comparing resources used through different life-history strategies with those resulting in death. By integrating data from GPS receivers with other animal-borne technologies and combining those data with additional life-history information, we believe understanding the drivers of HPRs will inform animal ecology and improve conservation.  相似文献   

13.
Aerial survey data are widely used to model distribution of wildlife. However, their performance in habitat modelling remains largely untested. We used aerial survey and satellite‐linked Global Positioning System (GPS) collar data for elephants, to test (i) whether there is an optimal spatial resolution of predictor variables at which habitat models based on aerial survey data that are uncorrected for locational error can accurately predict elephant habitat and (ii) whether habitat models based on these data sets can accurately predict the presence of elephants in closed woodland habitats. We applied maximum entropy modelling (Maxent) to these data sets and used the Normalised Difference Vegetation Index (NDVI) as well as distance from water points as the habitat predictors to answer these questions. Our results demonstrate better ability of aerial survey data to predict elephant presence at the coarser spatial resolution of 1000 m of both predictor variables. Habitat models derived from aerial survey data underpredicted elephant presence in more closed woodland habitats than those derived from GPS collar data. This result implies that elephants located under dense tree canopies are likely missed during an aerial survey. Our study is one of the first to empirically test and report results on the poor performance of aerial survey data in habitat modelling especially in dense woodlands.  相似文献   

14.
Radiotelemetry is the standard method for monitoring wild turkey (Meleagris gallapavo) movements and habitat use. Spatial data collected using telemetry-based monitoring are frequently inaccurate due to triangulation error. However, new technology, such as Global Positioning Systems (GPS) has increased ecologists' ability to accurately evaluate animal movements and habitat selection. We evaluated the efficacy of micro-GPS backpack units for use on wild turkeys. We tested a micro-GPS developed specifically for avian species that incorporated a GPS antenna with a lightweight rechargeable battery and a very high frequency (VHF) transmitter. We conducted a series of static tests to evaluate performance in varying types of vegetative canopy cover and terrain. After static testing, we deployed micro-GPS on 8 adult male Rio Grande wild turkeys (M. g. intermedia) trapped in south Texas and 2 adult females trapped in the Texas panhandle. Micro-GPS units collected 26,439 locations out of 26,506 scheduled attempts (99.7% fix rate) during static testing. Mean distance error across all static tests was 15.5 m (SE = 0.1). In summer 2009, we recovered micro-GPS from 4 tagged males and both females to evaluate data collection. Units on males acquired approximately 2,500 locations over a 65-day test period (94.5% fix rate). We recovered units from the 2 females after 19 days and 53 days; those units acquired 301 and 837 locations, respectively, for a 96% fix rate. Cost analysis indicated that VHF will be cost effective when 1 location per day is required up to 181 days, but micro-GPS becomes less expensive as frequency of daily locations increases. Our results indicate that micro-GPS have the potential to provide increased reliable data on turkey movement ecology and habitat selection at a higher resolution than conventional VHF telemetric methods. © 2011 The Wildlife Society.  相似文献   

15.
Technological advances for wildlife monitoring have expanded our ability to study behavior and space use of many species. But biotelemetry is limited by size, weight, data memory and battery power of the attached devices, especially in animals with light body masses, such as the majority of bird species. In this study, we describe the combined use of GPS data logger information obtained from free-ranging birds, and environmental information recorded by unmanned aerial systems (UASs). As a case study, we studied habitat selection of a small raptorial bird, the lesser kestrel Falco naumanni, foraging in a highly dynamic landscape. After downloading spatio-temporal information from data loggers attached to the birds, we programmed the UASs to fly and take imagery by means of an onboard digital camera documenting the flight paths of those same birds shortly after their recorded flights. This methodology permitted us to extract environmental information at quasi-real time. We demonstrate that UASs are a useful tool for a wide variety of wildlife studies.  相似文献   

16.
ABSTRACT Global Positioning System (GPS) telemetry is a prevalent tool now used in the study of large mammals. Global Positioning Systems either store the data on board the collar or contain a remote-transfer system that allows for data recovery at more frequent intervals. Spread spectrum (S-S) technology is a new mode of data transfer designed to overcome interference problems associated with narrow-band very high frequency and ultra high frequency data-transfer systems. We evaluated performance of S-S GPS radiocollars deployed on grizzly (Ursus arctos) and black bears (U. americanus). We also evaluated variables that influenced GPS fix success rates, with particular focus on animal activity, time of year, and temperature. The S-S GPS collars performed to our expectations and met study objectives; we did not experience any major problems with the data-transfer system. We observed varying rates of fix success that were directly related to recorded activity counts. Using logistic regression, we verified that activity counts were a reasonable measure of resting or feeding-traveling in both bear species. Our results showed that 73% and 79% of missed fixes, respectively, occurred when we predicted black and grizzly bears to be resting. Temperatures measured in the canister of the collar were not correlated with air temperature, suggesting posture and activity influenced canister temperature. Both measures of temperature were predictive of fix success. We did not find that fix success was related to body morphology (i.e., neck circumference, mass, and chest girth), fix interval, position of the GPS antenna relative to the sky, or sex of the bear. We conclude that fix success for both species is strongly related to activity patterns and time of year. Activity counters appear to be a reasonable measure of this behavior, and we recommend researchers consider including an activity-count system when deploying GPS collars. We also recommend researchers explore building separate models of habitat selection based upon categories of activity to account for bias in fix success associated with bear behavior.  相似文献   

17.
  1. Predicting the likelihood of wildlife presence at potential wildlife–livestock interfaces is challenging. These interfaces are usually relatively small geographical areas where landscapes show large variation over small distances. Models of wildlife distribution based on coarse data over wide geographical ranges may not be representative of these interfaces. High‐resolution data can help identify fine‐scale predictors of wildlife habitat use at a local scale and provide more accurate predictions of species habitat use. These data may be used to inform knowledge of interface risks, such as disease transmission between wildlife and livestock, or human–wildlife conflict.
  2. This study uses fine‐scale habitat use data from wild boar (Sus scrofa) based on activity signs and direct field observations in and around the Forest of Dean in Gloucestershire, England. Spatial logistic regression models fitted using a variant of penalized quasi‐likelihood were used to identify habitat‐based and anthropogenic predictors of wild boar signs.
  3. Our models showed that within the Forest of Dean, wild boar signs were more likely to be seen in spring, in forest‐type habitats, closer to the center of the forest and near litter bins. In the area surrounding the Forest of Dean, wild boar signs were more likely to be seen in forest‐type habitats and near recreational parks and less likely to be seen near livestock.
  4. This approach shows that wild boar habitat use can be predicted using fine‐scale data over comparatively small areas and in human‐dominated landscapes, while taking account of the spatial correlation from other nearby fine‐scale data‐points. The methods we use could be applied to map habitat use of other wildlife species in similar landscapes, or of movement‐restricted, isolated, or fragmented wildlife populations.
  相似文献   

18.
Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio‐marked sage‐grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long‐term recovery.  相似文献   

19.
Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may be responsible for the measurable improvement in sage-grouse nesting habitats within the development area. However, we cannot reject alternative hypotheses concerning the influence of population density and intraspecific competition. Additionally, we were unable to assess the actual fitness consequences of mitigation or the source-sink dynamics of the habitats. We compared the pre-mitigation and post-mitigation models predicted as maps with habitats ranked from low to high relative probability of use (equal-area bins: 1 – 5). We found more improvement in habitat rank between the two time periods around mitigated wells compared to non-mitigated wells. Informed mitigation within energy development fields could help improve habitats within the field. We recommend that any mitigation effort include well-informed plans to monitor the effectiveness of the implemented mitigation actions that assess both habitat use and relevant fitness parameters.  相似文献   

20.
Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin (Eudyptes chrysocome) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1–3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号