首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Background

Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats.

Methods/Principal Findings

Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats.

Conclusions

Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics.  相似文献   

2.
Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and themaintenance of muscle mass contributes significantly to disease prevention and the quality oflife. Although a link between mechanical stimuli and the regulation of muscle mass has beenrecognized for decades, the mechanisms involved in converting mechanical information into themolecular events that control this process have not been defined. Nevertheless, significantadvancements are being made in this field, and it has recently been established that signalingthrough a rapamycin-sensitive pathway is necessary for mechanically induced growth of skeletalmuscle. Since rapamycin is a highly specific inhibitor of a protein kinase called the mammaliantarget of rapamycin (mTOR), many investigators have concluded that mTOR signaling isnecessary for the mechanically induced growth of skeletal muscle. In this review, we havesummarized the current knowledge regarding how mechanical stimuli activate mTOR signaling,discussed the newly discovered role of phospholipase D (PLD) and phosphatidic acid (PA) inthis pathway, and considered the potential roles of PLD and PA in the mechanical regulation ofskeletal muscle mass.  相似文献   

3.
We sought to investigate the role of the adenosine A1 receptors (A1ARs) in white matter lesions under chronic cerebral hypoperfusion (CCH) and explore the potential repair mechanisms by activation of the receptors. A right unilateral common carotid artery occlusion (rUCCAO) method was used to construct a CCH model. 2-chloro-N6-cyclopentyladenosine (CCPA), a specific agonist of A1ARs, was used to explore the biological mechanisms of repair in white matter lesions under CCH. The expression of mammalian target of rapamycin (mTOR), phosphorylation of mTOR (P-mTOR), myelin basic protein (MBP, a marker of white matter myelination) were detected by Western-blot. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokine interleukin-10 (IL-10) levels were determined by ELISA. Compared with the control groups on week 2, 4 and 6, in CCPA-treated groups, the ratio of P-mTOR/mTOR, expression of MBP and IL-10 increased markedly, while the expression of TNF-α reduced at week 6. In conclusion, A1ARs appears to reduce inflammation in white matter via the mTOR signaling pathway in the rUCCAO mice. Therefore, A1ARs may serve as a therapeutic target during the repair of white matter lesions under CCH.  相似文献   

4.
Astrocytes constitute a major cell population in the brain with a myriad of essential functions, yet we know remarkably little about the signaling pathways and mechanisms that direct astrocyte maturation. To explore the signals regulating astrocyte development, we prospectively purified and cultured immature postnatal rodent astrocytes. We identified fibroblast growth factors (FGFs) and bone morphogenetic proteins (BMPs) as robust trophic factors for immature astrocytes. We showed that astrocytes respond directly to BMPs via phosphorylation of the smad1/5/8 pathway. In vitro, BMP signaling promoted immature astrocytes to adopt multiple characteristics of mature astrocytes, including a more process-bearing morphology, aquaporin-4 (AQP4) and S100β immunoreactivity, limited proliferation, and strong downregulation of epidermal growth factor receptor (EGFR). In vivo, activation of the smad1/5/8 pathway in astrocytes was seen during early postnatal development, but inhibition of astrocyte proliferation was not observed. These insights can aid in the further dissection of the mechanisms and pathways controlling astrocyte biology and development.  相似文献   

5.
哺乳动物雷帕霉素靶蛋白mTOR是一种非典型丝氨酸/苏氨酸蛋白激酶,可整合细胞外信号,磷酸化下游靶蛋白核糖体p70S6激酶,如S6K1及4E—BP1,影响转录与翻译,从而参与调控细胞生长、增殖等过程。近年来研究发现,调控mTOR通路可以干预某些疾病的病理过程。mTOR研究的新发现,可望为今后相关疾病的治疗提供新的靶点。  相似文献   

6.
自噬是以细胞内自噬体形成为特征,通过溶酶体吸收降解自身受损细胞器和大分子的一种自我消化过程,是细胞维持稳态的重要机制。自噬广泛参与多种重要的细胞功能,既能在代谢应激状态下保护受损细胞,又可能因为过度激活导致细胞发生II型程序性死亡,从而引发多种疾病,尤其对肿瘤的发生和发展更是发挥着"双刃剑"的作用。自噬通过多种分子信号机制调控肿瘤进程,包括mTOR依赖性和mTOR非依赖性途径。mTOR作为生长因子、能量和营养状态的感受器,可通过调节下游自噬复合物的形成,直接调控细胞自噬。阐明mTOR与细胞自噬的相互作用机制将有助于从分子水平上对各肿瘤病变进行分析和治疗。因此,本文就自噬与PI3K/Akt/mTOR通路在肿瘤中的研究进展作一综述。  相似文献   

7.

Background

Spleen enlargement is often detected in patients with liver cirrhosis, but the precise pathogenetic mechanisms behind the phenomenon have not been clearly elucidated. We investigated the pathogenetic mechanisms of splenomegaly in both portal hypertensive patients and rats, and tried to identify the possible therapy for this disease.

Methods

Spleen samples were collected from portal hypertensive patients after splenectomy. Rat models of portal hypertension were induced by common bile duct ligation and partial portal vein ligation. Spleen samples from patients and rats were used to study the characteristics of splenomegaly by histological, immunohistochemical, and western blot analyses. Rapamycin or vehicle was administered to rats to determine the contribution of mTOR signaling pathway in the development of splenomegaly.

Results

We found that not only spleen congestion, but also increasing angiogenesis, fibrogenesis, inflammation and proliferation of splenic lymphoid tissue contributed to the development of splenomegaly in portal hypertensive patients and rats. Intriguingly, splenomegaly developed time-dependently in portal hypertensive rat that accompanied with progressive activation of mTOR signaling pathway. mTOR blockade by rapamycin profoundly ameliorated splenomegaly by limiting lymphocytes proliferation, angiogenesis, fibrogenesis and inflammation as well as decreasing portal pressure.

Conclusions

This study provides compelling evidence indicating that mTOR signaling activation pathway plays a key role in the pathogenesis of splenomegaly in both portal hypertensive patients and rats. Therapeutic intervention targeting mTOR could be a promising strategy for patients with portal hypertension and splenomegaly.  相似文献   

8.

Aim

Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth.

Methods

Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.

Results

Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.

Conclusions

Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.  相似文献   

9.
Signaling pathways regulate contraction of striated (skeletal and cardiac) and smooth muscle. Although these are similar, there are striking differences in the pathways that can be attributed to the distinct functional roles of the different muscle types. Muscles contract in response to depolarization, activation of G-protein-coupled receptors and other stimuli. The actomyosin fibers responsible for contraction require an increase in the cytosolic levels of calcium, which signaling pathways induce by promoting influx from extracellular sources or release from intracellular stores. Rises in cytosolic calcium stimulate numerous downstream calcium-dependent signaling pathways, which can also regulate contraction. Alterations to the signaling pathways that initiate and sustain contraction and relaxation occur as a consequence of exercise and pathophysiological conditions.  相似文献   

10.
Objective: We investigated the effects of a diet containing EPAX‐7010, rich in PUFAs such as eicosapentaenoic acid [20:5(n‐3)] and docosahexaenoic acid [22:6(n‐3)], i.e., a PUFA/EPAX regimen, on T‐cell activation in diabetic pregnant rats and their obese pups. Research Methods and Procedures: Mild hyperglycemia in pregnant rats was induced by intraperitoneal injection of streptozotocin on Day 5 of gestation. T‐cell blastogenesis was assayed by using 3H‐thymidine, whereas intracellular free calcium concentrations ([Ca2+]i) were measured by using Fura‐2 in diabetic pregnant rats and their obese offspring. Results: Concavalin‐A‐stimulated T‐cell proliferation was decreased in both pregnant diabetic rats and their obese pups as compared with control animals. Feeding the PUFA/EPAX diet restored T‐cell proliferation in both groups of animals. We also employed ionomycin, which at 50 nM opens calcium channels, and thapsigargin (TG), which recruits [Ca2+]i from endoplasmic reticulum pool. We observed that ionomycin‐induced increases in [Ca2+]i in T‐cells of diabetic mothers and obese offspring were greater than in those of control rats. Furthermore, feeding PUFA/EPAX diet diminished significantly the ionomycin‐evoked rise in [Ca2+]i in diabetic and obese animals. TG‐induced increases in [Ca2+]i in T‐cells of diabetic pregnant rats and their obese offspring were greater than in those of control rats. The feeding of the experimental diet significantly curtailed the TG‐evoked increases in [Ca2+]i in both diabetic and obese rats. Discussion: Together, these observations provide evidence that T‐cell activation and T‐cell calcium signaling are altered during gestational diabetes and macrosomia. Hence, dietary fish oils, particularly eicosapentaenoic acid and docosahexaenoic acid, may restore these T‐cell abnormalities.  相似文献   

11.
Traumatic brain injury (TBI) is a common cause for cognitive and communication problems, but the molecular and cellular mechanisms are not well understood. Epigenetic modifications, such as microRNA (miRNA) dysregulation, may underlie altered gene expression in the brain, especially hippocampus that plays a major role in spatial learning and memory and is vulnerable to TBI. To advance our understanding of miRNA in pathophysiological processes of TBI, we carried out a time-course microarray analysis of microRNA expression profile in rat ipsilateral hippocampus and examined histological changes, apoptosis and synapse ultrastructure of hippocampus post moderate TBI. We found that 10 out of 156 reliably detected miRNAs were significantly and consistently altered from one hour to seven days after injury. Bioinformatic and gene ontology analyses revealed 107 putative target genes, as well as several biological processes that might be initiated by those dysregulated miRNAs. Among those differentially expressed microRNAs, miR-144, miR-153 and miR-340-5p were confirmed to be elevated at all five time points after TBI by quantitative RT-PCR. Western blots showed three of the predicated target proteins, calcium/calmodulin-dependent serine protein kinase (CASK), nuclear factor erythroid 2-related factor 2 (NRF2) and alpha-synuclein (SNCA), were concurrently down- regulated, suggesting that miR-144, miR-153 and miR-340-5p may play important roles collaboratively in the pathogenesis of TBI-induced cognitive and memory impairments. These microRNAs might serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain.  相似文献   

12.
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.  相似文献   

13.
mTOR是细胞生长和增殖的中枢调控因子。mTOR形成2个不同的复合物mTORC1和mTORC2。mTORC1受多种信号调节,如生长因子、氨基酸和细胞能量,同时,mTORC1调节许多重要的细胞过程,包括翻译、转录和自噬。AMPK作为一种关键的生理能量传感器,是细胞和有机体能量平衡的主要调节因子,协调多种代谢途径,平衡能量的供应和需求,最终调节细胞和器官的生长。能量代谢平衡调控是由多个与之相关的信号通路所介导,其中AMPK/mTOR信号通路在细胞内共同构成一个合成代谢和分解代谢过程的开关。此外,AMPK/mTOR信号通路还是一个自噬的重要调控途径。本文着重于目前对AMPK和mTOR信号传导之间关系的了解,讨论了AMPK/mTOR在细胞和有机体能量稳态中的作用。  相似文献   

14.
15.
为了探究雷帕霉素对糖尿病肾病大鼠足细胞生物学行为及哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路的影响,采用链脲霉素腹腔注射构建糖尿病肾病大鼠模型,将正常大鼠体内取出的足细胞设为对照组,模型大鼠体内取出的足细胞设为糖尿病肾病模型组(DN组),取2 mg·kg-1雷帕霉素干预DN组足细胞,并将其设为雷帕霉素组(RAPA组)。采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐[3-(4,5-dimethylthiahiazo-z-y1)-2,5-diphenytetrazoliumromide,MTT]法检测足细胞增殖水平,Transwell检测细胞迁移和侵袭能力,流式细胞术检测细胞凋亡水平,Western blot法检测上皮-间充质转化标志物[E-钙黏蛋白(E-cadherin)、N-钙黏蛋白(N-cadherin)、波形纤维蛋白(vimentin)]、mTOR和核糖体S6激酶1(S6K1)蛋白表达水平。结果显示,与对照组相比,DN组细胞增殖水平显著被抑制,细胞迁移、侵袭水平显著升高,细胞凋亡率显著增加,上皮-间充转标志物E-cadherin表达显著下调,N-cadherin和Vimentin表达显著上调,mTOR/S6K1信号通路被显著活化(P<0.05)。与DN组相比,RAPA组细胞增殖水平显著升高,细胞迁移、侵袭水平显著降低,细胞凋亡率显著降低,E-cadherin表达显著上调,N-cadherin和Vimentin表达显著下调,mTOR和S6K1的蛋白表达显著被抑制(P<0.05)。结果表明,雷帕霉素通过抑制mTOR信号通路,促进足细胞体外增殖,抑制细胞迁移、侵袭、凋亡和上皮-间充质转化,发挥对糖尿病肾病大鼠足细胞的保护作用。  相似文献   

16.
Despite an epidemic in obesity and metabolic syndrome limited means exist to effect adiposity or metabolic rate other than life style changes. Here we review evidence that neural signaling metabolites may modulate thermoregulatory pathways and offer novel means to fine tune energy use. We extend prior reviews on mechanisms that regulate thermogenesis and energy use in hibernation by focusing primarily on the neural signaling metabolites adenosine, AMP and glutamate.  相似文献   

17.
Resveratrol (RSV) is a naturally occurring polyphenol that has been found to exert antioxidant, anti-inflammatory, and neuroprotective properties. However, how RSV exerts its beneficial health effects remains largely unknown. Here, we show that RSV inhibits insulin- and leucine-stimulated mTOR signaling in C2C12 fibroblasts via a Sirt1-independent mechanism. Treating C2C12 cells with RSV dramatically inhibited insulin-stimulated Akt, S6 kinase, and 4E-BP1 phosphorylation but had little effect on tyrosine phosphorylation of the insulin receptor and activation of the p44/42 MAPK signaling pathway. RSV treatment also partially blocked mTOR and S6 kinase phosphorylation in TSC1/2-deficient mouse embryonic fibroblasts, suggesting the presence of an inhibitory site downstream of TSC1/2. Knocking out PDK1 or suppressing AMP-activated protein kinase had little effect on leucine-stimulated mTOR signaling. On the other hand, RSV significantly increased the association between mTOR and its inhibitor, DEPTOR. Furthermore, the inhibitory effect of RSV on leucine-stimulated mTOR signaling was greatly reduced in cells in which the expression levels of DEPTOR were suppressed by RNAi. Taken together, our studies reveal that RSV inhibits leucine-stimulated mTORC1 activation by promoting mTOR/DEPTOR interaction and thus uncover a novel mechanism by which RSV negatively regulates mTOR activity.  相似文献   

18.
Aging is associated with poor skeletal muscle regenerative ability following extended periods of hospitalization and other forms of muscular disuse. Resveratrol (3,5,4’-trihydroxystilbene) is a natural phytoalexin which has been shown in skeletal muscle to improve oxidative stress levels in muscles of aged rats. As muscle disuse and reloading after disuse increases oxidative stress, we hypothesized that resveratrol supplementation would improve muscle regeneration after disuse. A total of thirty-six male Fisher 344 × Brown Norway rats (32 mo.) were treated with either a water vehicle or resveratrol via oral gavage. The animals received hindlimb suspension for 14 days. Thereafter, they were either sacrificed or allowed an additional 14 day period of cage ambulation during reloading. A total of six rats from the vehicle and the resveratrol treated groups were used for the hindlimb suspension and recovery protocols. Furthermore, two groups of 6 vehicle treated animals maintained normal ambulation throughout the experiment, and were used as control animals for the hindlimb suspension and reloading groups. The data show that resveratrol supplementation was unable to attenuate the decreases in plantaris muscle wet weight during hindlimb suspension but it improved muscle mass during reloading after hindlimb suspension. Although resveratrol did not prevent fiber atrophy during the period of disuse, it increased the fiber cross sectional area of type IIA and IIB fibers in response to reloading after hindlimb suspension. There was a modest enhancement of myogenic precursor cell proliferation in resveratrol-treated muscles after reloading, but this failed to reach statistical significance. The resveratrol-associated improvement in type II fiber size and muscle mass recovery after disuse may have been due to decreases in the abundance of pro-apoptotic proteins Bax, cleaved caspase 3 and cleaved caspase 9 in reloaded muscles. Resveratrol appears to have modest therapeutic benefits for improving muscle mass after disuse in aging.  相似文献   

19.
SYNOPSIS. Administration of dexamethasone to rats infected with Trypanosoma lewisi resulted in the development of exceedingly large populations of trypanosomes which were fatal to their hosts. The elevated levels of parasitemia in treated rats early in infections were thought not to be a result of an increased reproductive rate. However, trypanosomes in treated rats 2 days postinfection did have a higher coefficient of variation in total length and a greater percentage of dividing forms than those observed from infected rats which were not given the drug. The course of infection may be markedly altered not only in intensity but also in length by this corticosteroid. It is suggested that dexamethasone administered at the levels recorded to rats infected with T. lewisi inhibits the production of ablastin and trypanocidal antibodies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号