首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.  相似文献   

2.
A critical analysis of “Real World” data concerning the genetic origins of people, archaeology and palaeoclimatic conditions, demonstrates possibilities of population migration for third time in ancient history, from East to West after Last Glacial Maximum (LGM), which gave the foundations of modern human civilization.  相似文献   

3.
4.
Mitochondrial dysfunction has been widely reported in schizophrenia patients. To dissect the matrilineal structure of Han Chinese with or without schizophrenia and to decipher the maternal influence and evolutionary history of schizophrenia, a total of 1212 schizophrenia patients and 1005 matched healthy controls, all of Han Chinese origin, were recruited in Hunan Province, China. We classified haplogroup for each individual based on mitochondrial DNA (mtDNA) sequence variations and compared the haplogroup distribution pattern between cases and controls. Haplogroup B5a presented a higher frequency in cases than in controls (P = 0.02, OR = 1.67, 95% CI = [1.09, 2.56]), and this result could be confirmed by permutation analysis. Age estimation of haplogroup B5a in cases revealed a much younger age than that of controls, which was coincident with the Northern Hemisphere deglaciation at the end of the Last Glacial Maximum. Analysis of complete mtDNA in five patients belonging to haplogroup B5a showed that this background effect might be caused by haplogroup- defining variants m.8584G〉A and m.10398A〉G. Our results showed that matrilineal risk factor for schizophrenia had an ancient origin and might acquire a predisposing effect on schizophrenia due to the environment change and/or orchestration with other nuclear genetic factors appeared recently in human evolutionary history.  相似文献   

5.
The Kow Swamp people are a fossil population of robust modern humans. We report optically stimulated luminescence (OSL) ages on sediments from Kow Swamp that are at odds with radiocarbon ages obtained previously for the site. The calibrated 14C ages place the Kow Swamp people in the period 15-9 ka. Our single aliquot OSL ages suggest that they lived around the time of the Last Glacial Maximum (LGM) between 22 and 19 ka. An LGM age for the Kow Swamp people is supported by palaeoenvironmental reconstruction. The shoreline silt, in which most of them were interred, was deposited by high lake levels between 26 and 19 ka. Few robust people were left after 19 ka when a sand lunette formed. Climate change may explain the demise of this unusual genetic population.  相似文献   

6.
7.
Vegetation History and Archaeobotany - Potential Last Glacial Maximum (LGM, 26,500–15,000 bp) members of the Eastern Beringia (now Alaska-Yukon, northwest North America) vascular...  相似文献   

8.
We determined the effects of past and future climate changes on the distribution of the Montivipera raddei species complex (MRC) that contains rare and endangered viper species limited to Iran, Turkey and Armenia. We also investigated the current distribution of MRC to locate unidentified isolated populations as well as to evaluate the effectiveness of the current network of protected areas for their conservation. Present distribution of MRC was modeled based on ecological variables and model performance was evaluated by field visits. Some individuals at the newly identified populations showed uncommon morphological characteristics. The distribution map of MRC derived through modeling was then compared with the distribution of protected areas in the region. We estimated the effectiveness of the current protected area network to be 10%, which would be sufficient for conserving this group of species, provided adequate management policies and practices are employed. We further modeled the distribution of MRC in the past (21,000 years ago) and under two scenarios in the future (to 2070). These models indicated that climatic changes probably have been responsible for an upward shift in suitable habitats of MRC since the Last Glacial Maximum, leading to isolation of allopatric populations. Distribution will probably become much more restricted in the future as a result of the current rate of global warming. We conclude that climate change most likely played a major role in determining the distribution pattern of MRC, restricting allopatric populations to mountaintops due to habitat alterations. This long-term isolation has facilitated unique local adaptations among MRC populations, which requires further investigation. The suitable habitat patches identified through modeling constitute optimized solutions for inclusion in the network of protected areas in the region.  相似文献   

9.
Projecting the future composition and function of communities is a major challenge, and there is an urgent need to develop, improve, and test the predictive capacity of ecological models under different climate states. We tested the effect of climate on spatial patterns of plant community composition over the past 21 000 yr, focusing on whether the spatial relationships between environmental distance and compositional dissimilarity are stable over time. We used a network of fossil‐pollen sites in eastern North America, combined with paleoclimate simulations from the Last Glacial Maximum (LGM; 21 000 calibrated years before present, 21 kyr BP) to the present. We modeled relationships between climate, geography, and compositional dissimilarity at 1 kyr periods using generalized dissimilarity modeling (GDM) and determined the strongest predictors of compositional dissimilarity. We assessed the performance of models calibrated for one time period (e.g. 14 kyr BP) in predicting patterns in the same period as well as at other times (e.g. 12 kyr BP), and tested whether predictive performance was related to the magnitude of climate change between the calibration and prediction time periods. Finally, we examined whether pooling data from multiple time periods improved predictive performance. Models explained 32 to 51% of compositional dissimilarity between locations within any single time period. The best set of predictors changed across time, with summer temperature and geographic distance the strongest predictors of compositional dissimilarity for most time periods. Models built for one time period explained turnover during nearby time periods relatively well, but performance decayed across time and with increasing climate change. Results were similar regardless of whether models were projected forward or backward through time, and did not improve when data were pooled across time. GDM predicts well the spatial patterns of past compositional dissimilarity and holds promise for modeling the drivers of compositional dissimilarity across space and time. However, the modeled relationships between compositional turnover and environmental distance are non‐stationary, so caution is needed when predicting across periods of significant climatic change.  相似文献   

10.
Phylogeographic studies of Eremias lizards (Lacertidae) in East Asia have been limited, and the impact of major climatic events on their population dynamics remains poorly known. This study aimed to investigate population histories and refugia during the Last Glacial Maximum of two sympatric Eremias lizards (E. argus and E. brenchleyi) inhabiting northern China. We sequenced partial mitochondrial DNA from the ND4 gene for 128 individuals of E. argus from nine localities, and 46 individuals of E. brenchleyi from five localities. Forty-four ND4 haplotypes were determined from E. argus samples, and 33 from E. brenchleyi samples. Population expansion events began about 0.0044 Ma in E. argus, and 0.031 Ma in E. brenchleyi. The demographic history of E. brenchleyi indicates a long-lasting population decline since the most recent common ancestor, while that of E. argus indicates a continuous population growth. Among-population structure was significant in both species, and there were multiple refugia across their range. Intermittent gene flow occurred among expanded populations across multiple refugia during warmer phases of the glacial period, and this may explain why the effective population size has remained relatively stable in E. brenchleyi and grown in E. argus.  相似文献   

11.
This paper reports a bioclimatic envelope model study of the potential distribution of 19 tree species in the Iberian Peninsula during the Last Glacial Maximum (LGM; 21 000 yr BP) and the Mid-Holocene (6000 yr BP). Current patterns of tree species richness and distributions are believed to have been strongly influenced by the climate during these periods. The modelling employed novel machine learning techniques, and its accuracy was evaluated using a threshold-independent method. Two atmospheric general circulation models, UGAMP and ECHAM3 (generated by the Palaeoclimate Modelling Intercomparison Project, PMIP), were used to provide climate scenarios under which the distributions of the 19 tree species were modelled. The results obtained for these scenarios were assessed by agreement measure analysis; they differed significantly for the LGM, but were more similar for the Mid-Holocene.
The results for the LGM support the inferred importance of pines in the Iberian Peninsula at this time, and the presence of evergreen Quercus in the south. Important differences in the altitude at which the modelled species grew were also predicted. During the LGM, some normally higher mountain species potentially became re-established in the foothills of the Pyrenees. The warm Mid-Holocene climate is clearly reflected in the predicted expansion of broad-leaved forests during this period, including the colonization of the northern part of the Iberian Peninsula by evergreen Quercus species.  相似文献   

12.
13.
  • 1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM).
  • 2 Glacial/early Holocene (26–10 14C kyr bp or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south‐eastern California/south‐western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ~4.0 14C kyr bp . Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr bp . Hexaploids appeared by 8.5 14C kyr bp in the lower Colorado River Basin, reaching their northernmost limits (~37°N) in the Mohave Desert between 5.6 and 3.9 14C kyr bp .
  • 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations.
  • 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture.
  相似文献   

14.
The region of western Georgia (Imereti) has been a major geographic corridor for human migrations during the Middle and Upper Palaeolithic (MP/UP). Knowledge of the MP and UP in this region, however, stems mostly from a small number of recent excavations at the sites of Ortvale Klde, Dzudzuana, Bondi, and Kotias Klde. These provide an absolute chronology for the Late MP and MP–UP transition, but only a partial perspective on the nature and timing of UP occupations, and limited data on how human groups in this region responded to the harsh climatic oscillations between 37,000–11,500 years before present. Here we report new UP archaeological sequences from fieldwork in Satsurblia cavein the same region. A series of living surfaces with combustion features, faunal remains, stone and bone tools, and ornaments provide new information about human occupations in this region (a) prior to the Last Glacial Maximum (LGM) at 25.5–24.4 ka cal. BP and (b) after the LGM at 17.9–16.2 ka cal. BP. The latter provides new evidence in the southern Caucasus for human occupation immediately after the LGM. The results of the campaigns in Satsurblia and Dzudzuana suggest that at present the most plausible scenario is one of a hiatus in the occupation of this region during the LGM (between 24.4–17.9 ka cal. BP). Analysis of the living surfaces at Satsurblia offers information about human activities such as the production and utilisation of lithics and bone tools, butchering, cooking and consumption of meat and wild cereals, the utilisation of fibers, and the use of certain woods. Microfaunal and palynological analyses point to fluctuations in the climate with consequent shifts in vegetation and the faunal spectrum not only before and after the LGM, but also during the two millennia following the end of the LGM.  相似文献   

15.
16.

Background and Aims

Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia.

Methods

The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models.

Key Results

The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline.

Conclusions

The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.  相似文献   

17.
The rate of change in DNA is an important parameter for understanding molecular evolution and hence for inferences drawn from studies of phylogeography and phylogenetics. Most rate calibrations for mitochondrial coding regions in marine species have been made from divergence dating for fossils and vicariant events older than 1-2 My and are typically 0.5-2% per lineage per million years. Recently, calibrations made with ancient DNA (aDNA) from younger dates have yielded faster rates, suggesting that estimates of the molecular rate of change depend on the time of calibration, decaying from the instantaneous mutation rate to the phylogenetic substitution rate. aDNA methods for recent calibrations are not available for most marine taxa so instead we use radiometric dates for sea-level rise onto the Sunda Shelf following the Last Glacial Maximum (starting ~18,000 years ago), which led to massive population expansions for marine species. Instead of divergence dating, we use a two-epoch coalescent model of logistic population growth preceded by a constant population size to infer a time in mutational units for the beginning of these expansion events. This model compares favorably to simpler coalescent models of constant population size, and exponential or logistic growth, and is far more precise than estimates from the mismatch distribution. Mean rates estimated with this method for mitochondrial coding genes in three invertebrate species are elevated in comparison to older calibration points (2.3-6.6% per lineage per million years), lending additional support to the hypothesis of calibration time dependency for molecular rates.  相似文献   

18.
Molecular anthropological studies of the populations in and around East Asia have resulted in the discovery that most of the Y-chromosome lineages of East Asians came from Southeast Asia. However, very few Southeast Asian populations had been investigated, and therefore, little was known about the purported migrations from Southeast Asia into East Asia and their roles in shaping the genetic structure of East Asian populations. Here, we present the Y-chromosome data from 1,652 individuals belonging to 47 Mon-Khmer (MK) and Hmong-Mien (HM) speaking populations that are distributed primarily across Southeast Asia and extend into East Asia. Haplogroup O3a3b-M7, which appears mainly in MK and HM, indicates a strong tie between the two groups. The short tandem repeat network of O3a3b-M7 displayed a hierarchical expansion structure (annual ring shape), with MK haplotypes being located at the original point, and the HM and the Tibeto-Burman haplotypes distributed further away from core of the network. Moreover, the East Asian dominant haplogroup O3a3c1-M117 shows a network structure similar to that of O3a3b-M7. These patterns indicate an early unidirectional diffusion from Southeast Asia into East Asia, which might have resulted from the genetic drift of East Asian ancestors carrying these two haplogroups through many small bottle-necks formed by the complicated landscape between Southeast Asia and East Asia. The ages of O3a3b-M7 and O3a3c1-M117 were estimated to be approximately 19 thousand years, followed by the emergence of the ancestors of HM lineages out of MK and the unidirectional northward migrations into East Asia.  相似文献   

19.
Historical climate changes and orogenesis are two important factors that have shaped intraspecific biodiversity patterns worldwide. Although southern South America has experienced such complex events, there is a paucity of studies examining the effects on intraspecific diversification in this part of the world. Liolaemus pictus is the southernmost distributed lizard in the Chilean temperate forest, whose genetic structure has likely been influenced by Pleistocene glaciations. We conducted a phylogeographic study of L. pictus in Chile and Argentina based on one mitochondrial and two nuclear genes recovering two strongly divergent groups, Northern and Southern clades. The first group is distributed from the northernmost limit of the species to the Araucanía region while the second group is distributed throughout the Andes and the Chiloé archipelago in Southern Chile. Our results suggest that L. pictus originated 751 Kya, with divergence between the two clades occurring in the late Pleistocene. Demographic reconstructions for the Northern and Southern clades indicate a decrease in effective population sizes likely associated with Pleistocene glaciations. Surprisingly, patterns of genetic variation, clades age and historical gene flow in populations distributed within the limits of the Last Glacial Maximum (LGM) are not explained by recent colonization. We propose an “intra-Andean multiple refuge” hypothesis, along with the classical refuge hypothesis previously proposed for the biota of the Chilean Coastal range and Eastern Andean Cordillera. Our hypothesis is supported by niche modelling analysis suggesting the persistence of fragments of suitable habitat for the species within the limits of the LGM ice shield. This type of refuge hypothesis is proposed for the first time for an ectothermic species.  相似文献   

20.
Climate models provide estimates of climatic change over periods of time in the ancient past. Macrophysical climate models (MCM) differ from the more widely used general circulation models (GCM), in that MCMs provide temporally high-resolution (~ 100 years) and site-specific estimations of monthly values of climate variables such as temperature and precipitation. In this paper, seasonal changes in climate variables are modeled for six 14C-dated fossil localities in North America. Five of these localities represent the time of maximum extent of ice during the most recent glacial episode, the Full Glacial (25 + –15 ka), including one at the peak of the Last Glacial Maximum (17–15 ka). The other locality represents the time as the ice began to recede, the Late Glacial (15–11 ka). Seasonal variations in temperature and precipitation modeled by MCM are herein compared with interpretations of seasonal variation based upon oxygen isotopes from serially sampled hypsodont teeth (mostly Equus and Bison) collected from each of these localities. Additionally, the MCM-modeled seasonal variations are used to predict the expected abundances of different plant functional groups (PFG) during those times, especially C3 and C4 functional groups, using modern relationships. These predictions are compared with carbon isotopic values from the same teeth. The importance of atmospheric pCO2 for the relative abundance of plants utilizing the C4 metabolic pathway is discussed, given that glacial episodes are known to have been times of lower atmospheric pCO2. Interpretations of seasonal variability and the relative abundance of C3 versus C4 vegetation based upon isotopes from tooth enamel are in broad agreement with predictions using the MCM and the modern distribution of PFGs with climate variables. The influence of pCO2 on the distribution of C4 vegetation during glacial times appears to be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号