共查询到20条相似文献,搜索用时 8 毫秒
1.
Gabriele Giacomo Schiattarella Fabio Cattaneo Gianluigi Pironti Fabio Magliulo Giuseppe Carotenuto Marinella Pirozzi Roman Polishchuk Domenica Borzacchiello Roberta Paolillo Marco Oliveti Nicola Boccella Marisa Avvedimento Maria Sepe Giuseppe Gargiulo Assunta Lombardi Rosa Anna Busiello Bruno Trimarco Giovanni Esposito Antonio Feliciello Cinzia Perrino 《PloS one》2016,11(7)
2.
Gabriele Giacomo Schiattarella Fabio Cattaneo Gianluigi Pironti Fabio Magliulo Giuseppe Carotenuto Marinella Pirozzi Roman Polishchuk Domenica Borzacchiello Roberta Paolillo Marco Oliveti Nicola Boccella Marisa Avvedimento Maria Sepe Assunta Lombardi Rosa Anna Busiello Bruno Trimarco Giovanni Esposito Antonio Feliciello Cinzia Perrino 《PloS one》2016,11(5)
A-kinase anchoring proteins (AKAPs) transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS) production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2). In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1-/-), Siah2 knockout mice (Siah2-/-) or their wild-type (wt) littermates underwent myocardial infarction (MI) by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham). Twenty-four hours after coronary ligation, Akap1-/- mice displayed larger infarct size compared to Siah2-/- or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1-/- mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1-/- mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets. 相似文献
3.
4.
Peifu Tang Hongping Hou Licheng Zhang Xia Lan Zhi Mao Daohong Liu Chunqing He Hailong Du Lihai Zhang 《Molecular neurobiology》2014,49(1):276-287
Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis. 相似文献
5.
Takayuki Ozawa 《Bioscience reports》1997,17(3):237-250
The molecular genetics and bioenergetics of oxidative damage, fragmentation, and fragility of mitochondrial DNA in cellular apoptosis is reviewed in connection with the redox mechanism of ageing. 相似文献
6.
7.
Chatchawan Singhapol Deepali Pal Rafal Czapiewski Mahendar Porika Glyn Nelson Gabriele C. Saretzki 《PloS one》2013,8(1)
Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells. 相似文献
8.
BackgroundGrowth factors, energy sources, and mitochondrial function strongly affect embryo growth and development in vitro. The biological role and prospective significance of the mitofusin gene Mfn2 in the development of preimplantation embryos remain poorly understood. Our goal is to profile the role of Mfn2 in mouse embryos and determine the underlying mechanism of Mfn2 function in embryo development.MethodsWe transfected Mfn2-siRNA into 2-cell fertilized eggs and then examined the expression of Mfn2, the anti-apoptotic protein Bcl-2, and the apoptosis-promoting protein Bax by Western blot. Additionally, we determined the blastocyst formation rate and measured ATP levels, mtDNA levels, mitochondrial membrane potential (ΔΨm), and apoptosis in all of the embryos.ResultsThe results indicate that the Mfn2 and Bcl-2 levels were markedly decreased, whereas Bax levels were increased in the T group (embryos transfected with Mfn2-siRNA) compared with the C group (embryos transfected with control-siRNA). The blastocyst formation rate was significantly decreased in the T group. The ATP content and the relative amounts of mtDNA and cDNA in the T group were significantly reduced compared with the C group. In the T group, ΔΨm and Ca2+ levels were reduced, and the number of apoptotic cells was increased.ConclusionLow in vitro expression of Mfn2 attenuates the blastocyst formation rate and cleavage speed in mouse zygotes and causes mitochondrial dysfunction, as confirmed by the ATP and mtDNA levels and mitochondrial membrane potential. Mfn2 deficiency induced apoptosis through the Bcl-2/Bax and Ca2+ pathways. These findings indicate that Mfn2 could affect preimplantation embryo development through mitochondrial function and cellular apoptosis. 相似文献
9.
10.
线粒体途径是细胞凋亡的重要途径之一. 在特定的刺激下,例如高糖条件,可以通过caspase依赖性和非依赖性两种途径诱导多种细胞凋亡.但线粒体凋亡途径在高糖引起成骨细胞凋亡中所起的作用,目前尚不清楚.本研究证明,高糖可以通过线粒体凋亡途径诱导成骨细胞凋亡.Annexin V-FITC/PI流式细胞学检测显示,高糖可诱导MC3T3-E1细胞凋亡.Western印迹检测发现,不同浓度D-葡萄糖(11,22,33 mmol/L)可以引起线粒体中Bax蛋白表达的增加,使Bax蛋白由细胞质中易位到线粒体,激活了线粒体凋亡途径.JC-1荧光探针检测证实,高糖处理成骨细胞后,线粒体膜电位明显降低,表明线粒体途径被激活.而细胞质中的细胞色素c、凋亡诱导因子(AIF)表达增加,细胞色素c和AIF从线粒体中释放到细胞质中,释放到细胞质中的细胞色素c使caspase-3、caspase-9剪切活化,从而激活了caspase依赖性凋亡途径.因此,线粒体凋亡途径可能是高糖诱导成骨细胞凋亡过程中一个重要的途径. 相似文献
11.
Kahori Shiba-Fukushima Taku Arano Gen Matsumoto Tsuyoshi Inoshita Shigeharu Yoshida Yasushi Ishihama Kwon-Yul Ryu Nobuyuki Nukina Nobutaka Hattori Yuzuru Imai 《PLoS genetics》2014,10(12)
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin''s ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. 相似文献
12.
镉(cadmium,Cd)是一种生物累积性的有毒重金属元素,能够在肾组织大量蓄积并引起肾发生病变和功能损伤。前期研究证实,Cd处理能够引起猪肾PK-15细胞的活性氧(reactive oxygen species,ROS)水平升高和细胞死亡,但详细机制有待进一步研究。本研究以PK-15细胞为研究对象,通过CCK-8检测、透射电镜观察、DCFH-DA标记、JC-1染色、彗星实验和流式细胞术等研究手段,分别检测Cd处理后的细胞活性、形态变化、ROS生成、线粒体膜电位Δψm、DNA损伤及细胞凋亡情况。CCK-8实验结果显示,CdCl2处理后PK-15细胞活性下降,且呈时间和剂量依赖性;形态学观察发现,CdCl2处理引起PK-15细胞皱缩、变圆,细胞核固缩、染色质凝聚,线粒体肿胀、线粒体嵴减少或消失;荧光染色和流式细胞术检测结果显示,CdCl2处理引起PK-15细胞内ROS水平升高、线粒体膜电位Δψm下降和DNA损伤,最终导致细胞凋亡。Western印迹结果显示,CdCl2处理组中促凋亡蛋白质Bax表达量上调,抑凋亡蛋白质Bcl-2表达量下调,并且CdCl2处理组检测到了活化状态的裂解胱天蛋白酶3(cleaved caspase 3)。此外,ROS清除剂N-乙酰基-L-半胱氨酸(N-acetyl-L-cysteine,NAC)缓解了CdCl2引起的线粒体损伤、DNA损伤和细胞凋亡。综上所述,Cd通过引发氧化应激和线粒体损伤诱导PK-15细胞凋亡。 相似文献
13.
14.
15.
Runxiang Zhang Ran Yi Yanju Bi Lu Xing Jun Bao Jianhong Li 《Biological trace element research》2017,178(2):310-319
Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver. 相似文献
16.
17.
Alleviation of Aflatoxin B1‐Induced Genomic Damage by Proanthocyanidins via Modulation of DNA Repair 下载免费PDF全文
Saleh A. Bakheet Ahmed M. Alhuraishi Naif O. Al‐Harbi Khaled A. Al‐Hosaini Shakir D. Al‐Sharary Mohammed M. Attia Ali R. Alhoshani Othman A. Al‐Shabanah Mohammed M. Al‐Harbi Faisal Imam Sheikh F. Ahmad Sabry M. Attia 《Journal of biochemical and molecular toxicology》2016,30(11):559-566
In order to study the mechanisms underlying the alleviation of aflatoxin B1‐induced genomic damage by proanthocyanidins (PAs), we examined the modulation of oxidative DNA damage induced by aflatoxin B1 in PAs‐pretreated animals. The effects of PAs on changes in the expression of DNA damage and repair genes induced by aflatoxin B1 were also evaluated in rat marrow cells. Administration of PAs before aflatoxin B1 significantly mitigated aflatoxin B1‐induced oxidative DNA damage in a dose‐dependent manner. Aflatoxin B1 treatment induced significant alterations in the expression of specific DNA repair genes, and the pre‐treatment of rats with PAs ameliorated the altered expression of these genes. Conclusively, PAs protect against aflatoxin B1‐induced oxidative DNA damage in rats. These protective effects are attributed to the antioxidant effects of PA and enhanced DNA repair through modulation of DNA repair gene expression. Therefore, PAs are a promising chemoprotective agent for averting genotoxic risks associated with aflatoxin B1 exposure. 相似文献
18.
Chengfen Wang Kan Chen Yujing Xia Weiqi Dai Fan Wang Miao Shen Ping Cheng Junshan Wang Jie Lu Yan Zhang Jing Yang Rong Zhu Huawei Zhang Jingjing Li Yuanyuan Zheng Yingqun Zhou Chuanyong Guo 《PloS one》2014,9(9)
Background
Hepatic ischemia–reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved.Methods
A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM).Results
We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice.Conclusion
NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2. 相似文献19.
Xiuxiu Lv Xiaohui Yu Yiyang Wang Faqiang Wang Hongmei Li Yanping Wang Daxiang Lu Renbin Qi Huadong Wang 《PloS one》2012,7(10)
Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy. 相似文献
20.
观察NK4通过拮抗肝细胞生长因子(HGF)诱导不同肿瘤细胞凋亡,研究其生物学作用及分子机制.以足叶乙甙(VP-16)诱导凋亡,分别或经HGF蛋白、NK4蛋白处理5种肿瘤细胞(B细胞淋巴瘤细胞系Raji、人急性粒细胞白血病细胞系HL-60、宫颈癌细胞系HeLa、前列腺癌细胞系PC-3、非小细胞肺癌细胞系A549),采用流式细胞术(FCM)、吖啶橙 (AO) 染色法、苏木素 伊红(HE)染色法定量观察5种肿瘤细胞的凋亡情况,并进行相关分析. FCM发现,经VP-16处理5种肿瘤细胞凋亡率均显著高于对照组(P<0.001),而HGF+VP-16组凋亡率明显下降(P<0.01),HGF+NK4+VP-16组细胞凋亡率均明显高于HGF+VP-16组(P<0.05). AO染色和HE染色结果也证实,5种肿瘤细胞经VP-16处理后凋亡率均显著增高 (P<0.001,P<0.001),而HGF+VP-16组细胞凋亡率均明显低于VP-16组(P<0.001,P<0.01), HGF+NK4+VP-16组细胞凋亡率均明显高于HGF+VP-16组(P<0.001,P<0.05).此外,发现NK4+VP-16组、HGF+ NK4+VP-16组、VP-16组等3组间凋亡率无统计学差异(P>0.05). 以上结果提示,HGF蛋白可抵抗凋亡诱导剂VP-16的作用, 明显降低细胞凋亡;NK4通过竞争性抑制HGF从而促进肿瘤细胞的凋亡,具有潜在的肿瘤治疗价值. 相似文献