首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals live in close association with microorganisms, mostly prokaryotes, living in or on them as commensals, mutualists or parasites, and profoundly affecting host fitness. Most animal–microbe studies focus on microbial community structure; for this project, allometry (scaling of animal attributes with animal size) was applied to animal–microbe relationships across a range of species spanning 12 orders of magnitude in animal mass, from nematodes to whales. Microbial abundances per individual animal were gleaned from published literature and also microscopically counted in three species. Abundance of prokaryotes/individual versus animal mass scales as a nearly linear power function (exponent = 1.07, R2 = 0.94). Combining this power function with allometry of animal abundance indicates that macrofauna have an outsized share of animal-associated microorganisms. The total number of animal-associated prokaryotes in Earth''s land animals was calculated to be 1.3–1.4 × 1025 cells and the total of marine animal-associated microbes was calculated to be 8.6–9.0 × 1024 cells. Animal-associated microbes thus total 2.1–2.3 × 1025 of the approximately 1030 prokaryotes on the Earth. Microbes associated with humans comprise 3.3–3.5% of Earth''s animal-associated microbes, and domestic animals harbour 14–20% of all animal-associated microbes, adding a new dimension to the scale of human impact on the biosphere. This novel allometric power function may reflect underlying mechanisms involving the transfer of energy and materials between microorganisms and their animal hosts. Microbial diversity indices of animal gut communities and gut microbial species richness for 60 mammals did not indicate significant scaling relationships with animal body mass; however, further research in this area is warranted.  相似文献   

2.
Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content.  相似文献   

3.
Continuous cultivation of heterotrophic freshwater bacteria was used to assess the relationship between DNA synthesis and tritiated thymidine incorporation. The bacteria were grown on a yeast extract medium with generation times of 0.25 to 3.7 days. In six different continuous cultures, each inoculated with a grazer-free mixed bacterial sample from Lake Vechten (The Netherlands), tritiated thymidine incorporation into a cold trichloroacetic acid precipitate and bacterial cell production were measured simultaneously. Empirical conversion factors were determined by division of both parameters. They ranged from 0.25 × 1018 to 1.31 × 1018 cells mol of tritiated thymidine-1 (mean, 0.60 × 1018 cells mol of tritiated thymidine-1). In addition, DNA concentrations were measured by fluorometry with Hoechst 33258. The validity of this technique was confirmed. Down to a generation time of 0.67 day, bacterial DNA content showed little variation, with values of 3.8 to 4.9 fg of DNA cell-1. Theoretical conversion factors, which can be derived from DNA content under several assumptions, were between 0.26 × 1018 and 0.34 × 1018 cells mol of thymidine-1 (mean, 0.30 × 1018 cells mol of thymidine-1). Isotope dilution was considered the main factor in the observed discrepancy between the conversion factors. In all experiments, a tritiated thymidine concentration of 20 nM was used. Control experiments indicated maximum incorporation at this concentration. It was therefore concluded that the observed difference resulted from intracellular isotope dilution which cannot be detected by current techniques for isotope dilution analysis.  相似文献   

4.
Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.  相似文献   

5.
Total and cellulolytic bacterial and fungal numbers were determined in ruminal and cecal contents of 20 blue duikers (Cephalophus monticola). The animals were equally divided by sex and fed two diets, either high roughage or high concentrate. The mean concentration for total bacterial numbers in the rumen was 26.0 × 108/g of contents, with values ranging from 2 × 108/g to 93 × 108/g. Cellulolytic numbers averaged 6.0 × 108/g with a range of 1.5 × 108/g to 24.0 × 108/g. No differences related to sex or diet were found. In contrast, total bacterial numbers in the cecum differed between diets (P < 0.02), i.e., 1,046 × 106 bacteria per g for animals fed the high-forage diet compared with 166 × 106/g for those fed the high-concentrate diet. Cellulolytic bacterial counts in the cecal contents averaged 3.1 and 7.0% of the total counts for the high-forage and high-concentrate diets, respectively. Low concentrations of fungi were found in both ruminal and cecal contents of some, but not all, animals. Unexpectedly, concentrations of bacteria and fungi in the rumen and cecum were highly correlated with their total numbers (concentration multiplied by total weight of contents).  相似文献   

6.
The molecular weight of the large RNA of Sendai virus has been determined by sedimentation analysis in sucrose gradients containing 99% dimethyl sulfoxide (DMSO) to be 2.3 × 106. Sendai RNA recovered from 99% DMSO was found to cosediment with nondenatured Sendai RNA at 46 to 48s in ordinary sucrose gradients. The molecular weight value of 2.3 × 106 is considerably smaller than the estimates of 6 × 106 to 7 × 106 determined under nondenaturing conditions, suggesting a unique structure for Sendai RNA.  相似文献   

7.
The ribonucleic acid (RNA) specified by bacteriophage 29 was isolated under conditions which minimized physical and enzymatic degradation, reduced aggregation, and enriched for completed molecules. This RNA was fractionated both by sedimentation through sucrose density gradients and electrophoresis through polyacrylamide gels to measure the size and relative amount of each component. Early RNA consisted of six components of molecular weight 0.75 × 106, 0.44 × 106, 0.37 × 106, 0.25 × 106, 0.09 × 106, and 0.04 × 106, accounting for 35% of the coding capacity of 29 deoxyribonucleic acid (DNA). All of these components except the one at 0.44 × 106 were detected when infection occurred in the presence of chloramphenicol. Synthesis of the major early component (0.75 × 106) ceased shortly after the onset of viral DNA synthesis. The other species of early RNA were synthesized throughout the latent period. Three additional components, 1.75 × 106, 0.93 × 106, and 0.07 × 106, appear at late times. The two large RNAs may be polycistronic messenger RNAs corresponding to the seven viral capsid proteins.  相似文献   

8.
Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×104, 37.5×104, 48.0×104, 58.5×104, 69.0×104 plants ha–1) during 2010–2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011–2013. Our results indicated that planting densities of 58.5×104 plants ha–1 in ZS11 and 48.0×104 plants ha–1 in HYZ9 have significantly higher yield compared with the density of 27.0×104 plants ha–1for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×104 (n m–2) and ∼1×104 (n m-2), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m–2) and ∼300 (n m–2), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.  相似文献   

9.
Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA) experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10−9, with a Poisson confidence interval of 4.1×10−9 − 9.5×10−9, per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10−11, with a Poisson confidence interval ranging from 7.4×10−13 to 1.6×10−10, is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.  相似文献   

10.
The molecular weight of single-stranded DNA from the slime mold Physarum polycephalum has been determined by alkaline gradient centrifugation. The average molecular weight during DNA synthesis (~1.5 × 107 D) is less than that observed in nonsynthetic periods (~4 × 107 D). On the basis of a chromosome number of 50 per nucleus and a DNA content of 1 μμg per nucleus, we are led to conclude that at pH 12 each chromosome dissociates into 300 (single-stranded) pieces of DNA. We have also compared the sedimentation profiles of single-stranded DNA from Escherichia coli, PPLO, and T2 bacteriophage. These data support the conjecture that each bacterial chromosome can be dissociated into 10 or 12 single-stranded pieces of DNA. Dissociation of DNA into multiple pieces under our experimental conditions is best interpreted in terms of interruptions in the continuity of the DNA either by naturally occurring gaps or at alkali-labile bonds.  相似文献   

11.
Herpes simplex virus subtype 1 deoxyribonucleic acid (DNA) was sheared in a French press to uniform fragments, denatured by heating, then allowed to reassociate. The renaturation reaction followed second-order kinetics with a single rate constant indicating that at least 95% of the genome was unique and that repetitive sequences, if present, were not detectable by this technique. The kinetic complexity of the herpes simplex genome was determined by DNA renaturation kinetics to be (95 ± 1) × 106 daltons. Since this value is in excellent agreement with the molecular weight of viral DNA [(99 ± 5) × 106 daltons] obtained from velocity sedimentation studies, it is concluded that virions contain only one species of double-stranded DNA molecules 95 × 106 to 99 × 106 daltons in molecular weight.  相似文献   

12.
The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-negative, mesophilic sulfate-reducing bacteria (SRB). DNA was extracted from sediment samples, and contaminating materials were removed by a series of steps. Efficiency of DNA extraction was 48% based on the recovery of tritiated plasmid DNA added to samples prior to extraction. Reproducibility of the extraction procedure was demonstrated by hybridizations to replicate samples. Numbers of target cells in samples were estimated by comparing the amount of hybridization to extracted DNA obtained with each probe to that obtained with a standard curve of genomic DNA for reference strains included on the same membrane. In June, numbers of SRB detected with an SRB-specific probe ranged from 6.0 × 107 to 2.5 × 109 (average, 1.1 × 109 ± 5.2 × 108) cells g of sediment−1. In September, numbers of SRB detected ranged from 5.4 × 108 to 7.3 × 109 (average, 2.5 × 109 ± 1.5 × 109) cells g of sediment−1. The capability of using rDNA probes to estimate cell numbers by hybridization to DNA extracted from complex matrices permits initiation of detailed studies on community composition and changes in communities based on cell numbers in formerly intractable environments.  相似文献   

13.
We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.23 × 109 callable sites from 12 individuals, we confirmed six single nucleotide mutations. We estimated the false negative rate in the experiment by generating synthetic mutations using the empirical distributions of numbers of nonreference bases at heterozygous sites in the offspring. The proportion of synthetic mutations at callable sites that we failed to detect was <1%, implying that the false negative rate was extremely low. Our estimate of the point mutation rate is 2.8 × 10−9 (95% confidence interval = 1.0 × 10−9 − 6.1 × 10−9) per site per generation, which is at the low end of the range of previous estimates, and suggests an effective population size for the species of ∼1.4 × 106. At one site, point mutations were present in two individuals, indicating that there had been a premeiotic mutation cluster, although surprisingly one individual had a G→A transition and the other a G→T transversion, possibly associated with error-prone mismatch repair. We also detected three short deletion mutations and no insertions, giving a deletion mutation rate of 1.2 × 10−9 (95% confidence interval = 0.7 × 10−9 − 11 × 10−9).  相似文献   

14.
A plasmid marker rescue system based on restoration of the nptII gene was established in Streptococcus gordonii to study the transfer of bacterial and transgenic plant DNA by transformation. In vitro studies revealed that the marker rescue efficiency depends on the type of donor DNA. Plasmid and chromosomal DNA of bacteria as well as DNA of transgenic potatoes were transferred with efficiencies ranging from 8.1 × 10−6 to 5.8 × 10−7 transformants per nptII gene. Using a 792-bp amplification product of nptII the efficiency was strongly decreased (9.8 × 10−9). In blood sausage, marker rescue using plasmid DNA was detectable (7.9 × 10−10), whereas in milk heat-inactivated horse serum (HHS) had to be added to obtain an efficiency of 2.7 × 10−11. No marker rescue was detected in extracts of transgenic potatoes despite addition of HHS. In vivo transformation of S. gordonii LTH 5597 was studied in monoassociated rats by using plasmid DNA. No marker rescue could be detected in vivo, although transformation was detected in the presence of saliva and fecal samples supplemented with HHS. It was also shown that plasmid DNA persists in rat saliva permitting transformation for up to 6 h of incubation. It is suggested that the lack of marker rescue is due to the absence of competence-stimulating factors such as serum proteins in rat saliva.  相似文献   

15.
Rates of Microbial Metabolism in Deep Coastal Plain Aquifers   总被引:15,自引:9,他引:6       下载免费PDF全文
Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C] acetate were 9.4 × 10−3 to 2.4 × 10−1 for the Black Creek aquifer, 1.1 × 10−2 for the Middendorf aquifer, and <7 × 10−5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10−4 to 10−6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10−4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.  相似文献   

16.
Significantly more occlusion bodies (OB) of DuPont viral construct HzSNPV-LqhIT2, expressing a scorpion toxin, were transported by artificial rainfall to cotton plants from sandy soil (70:15:15 sand-silt-clay) than from silt (15:70:15) and significantly more from silt than from clay (15:15:70). The amounts transported by 5 versus 50 mm of precipitation were the same, and transport was zero when there was no precipitation. In treatments that included precipitation, the mean number of viable OB transported to entire, 25- to 35-cm-tall cotton plants ranged from 56 (clay soil, 5 mm of rain) to 226 (sandy soil, 50 mm of rain) OB/plant. In a second experiment, viral transport increased with increasing wind velocity (0, 16, and 31 km/h) and was greater in dry (−1.0 bar of matric potential) than in moist (−0.5 bar) soil. Wind transport was greater for virus in a clay soil than in silt or sand. Only 3.3 × 10−7 (clay soil, 5 mm rain) to 1.3 × 10−6 (sandy soil, 50 mm rain) of the OB in surrounding soil in experiment 1 or 1.1 × 10−7 (−0.5 bar sandy soil, 16-km/h wind) to 1.3 × 10−6 (−1.0 bar clay soil, 31-km/h wind) in experiment 2 were transported by rainfall or wind to cotton plants. This reduces the risk of environmental release of a recombinant nucleopolyhedrovirus (NPV), because only a very small proportion of recombinant virus in the soil reservoir is transported to vegetation, where it can be ingested by and replicate in new host insects.  相似文献   

17.
Sex differences in schizophrenia are well known, but their genetic basis has not been identified. We performed a genome-wide association scan for schizophrenia in an Ashkenazi Jewish population using DNA pooling. We found a female-specific association with rs7341475, a SNP in the fourth intron of the reelin (RELN) gene (p = 2.9 × 10−5 in women), with a significant gene-sex effect (p = 1.8 × 10−4). We studied rs7341475 in four additional populations, totaling 2,274 cases and 4,401 controls. A significant effect was observed only in women, replicating the initial result (p = 2.1 × 10−3 in women; p = 4.2 × 10−3 for gene-sex interaction). Based on all populations the estimated relative risk of women carrying the common genotype is 1.58 (p = 8.8 × 10−7; p = 1.6 × 10−5 for gene-sex interaction). The female-specific association between RELN and schizophrenia is one of the few examples of a replicated sex-specific genetic association in any disease.  相似文献   

18.
The competitiveness of a Rhizobium leguminosarum strain was investigated at two separate locations in field inoculation studies on commercially grown peas. The soil at each location (sites I and II) contained an indigenous R. leguminosarum population of ca. 3 × 104 rhizobia per g of soil. At site I it was necessary to use an inoculum concentration as large as 4 × 107 CFU ml−1 (2 × 106 bacteria seed−1) to establish the inoculum strain in the majority of nodules (73%). However, at site II the inoculum strain formed only 33% of nodules when applied at this (107 CFU ml−1) level. Establishment could not be further improved by increasing the inoculum concentration even as high as 109 CFU ml−1 (9.6 × 107 bacteria seed−1). The inoculum strain could be detected at both sites 19 months after inoculation. Analysis by intrinsic antibiotic resistance patterns and plasmid DNA profiles indicated that a dominant strain(s) and plasmid pool existed among the indigenous population at site II. Competition experiments were carried out under laboratory conditions between a dominant indigenous isolate and the inoculum strain. Both strains were shown to be equally competitive.  相似文献   

19.
Bacterioplankton productivity in Antarctic waters of the eastern South Pacific Ocean and Drake Passage was estimated by direct counts and frequency of dividing cells (FDC). Total bacterioplankton assemblages were enumerated by epifluorescent microscopy. The experimentally determined relationship between in situ FDC and the potential instantaneous growth rate constant (μ) is best described by the regression equation ln μ = 0.081 FDC − 3.73. In the eastern South Pacific Ocean, bacterioplankton abundance (2 × 105 to 3.5 × 105 cells per ml) and FDC (11%) were highest at the Polar Front (Antarctic Convergence). North of the Subantarctic Front, abundance and FDC were between 1 × 105 to 2 × 105 cells per ml and 3 to 5%, respectively, and were vertically homogeneous to a depth of 600 m. In Drake Passage, abundance (10 × 105 cells per ml) and FDC (16%) were highest in waters south of the Polar Front and near the sea ice. Subantarctic waters in Drake Passage contained 4 × 105 cells per ml with 4 to 5% FDC. Instantaneous growth rate constants ranged between 0.029 and 0.088 h−1. Using estimates of potential μ and measured standing stocks, we estimated productivity to range from 0.62 μg of C per liter · day in the eastern South Pacific Ocean to 17.1 μg of C per liter · day in the Drake Passage near the sea ice.  相似文献   

20.
The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log10-transformed protein-coding gene number (Y′) versus log10-transformed genome size (X′, genome size in kbp) were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y′ = ln(-46.200+22.678X′, whereas non-eukaryotes a linear model, Y′ = 0.045+0.977X′, both with high significance (p<0.001, R2>0.91). Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%–1%) compared to higher and relatively stable percentages in prokaryotes and viruses (97%–47%). The eukaryotic regression models project that the smallest dinoflagellate genome (3×106 kbp) contains 38,188 protein-coding (40,086 total) genes and the largest (245×106 kbp) 87,688 protein-coding (92,013 total) genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号