首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragments of discharged ejectisomes were isolated from two Cryptomonas and a Chroomonas species by detergent treatment followed by Percoll density gradient centrifugation. The fragments withstand high concentrated detergent solutions, reducing agents and freeze-thawing. Disintegration was achieved in 6 M guanidine hydrochloride. Reassembly into long, filamentous, ejectisome-like structures occurred after dialysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the polypeptide patterns of isolated ejectisome fragments and of reconstituted ejectisome-like structures were dominated by polypeptides with relative molecular weights of approximately 6 kDa. The polypeptides were not glycosylated and did not cross-react with antisera directed against recombinant Reb polypeptides which constitute the R-bodies of Caedibacter taeniospiralis. A polyclonal antiserum directed against reconstituted, ejectisome-like filaments cross-reacted with the 6-kDa polypeptides and immunolabeled extruded ejectisome filaments. Twenty amino acid residues, obtained by N-terminal amino acid sequence analysis, matched to polypeptide sequences deduced from cDNA sequences of the cryptophyte Guillardia theta. The term “ejectisins” is introduced for the 6-kDa polypeptides which represent a major component of cryptophycean ejectisomes.  相似文献   

2.
We previously showed that most subunits in the oxygen-evolving photosystem II (PSII) preparation from the diatom Chaetoceros gracilis are proteolytically unstable. Here, we focused on identifying the proteases that cleave PSII subunits in thylakoid membranes. Major PSII subunits and fucoxanthin chlorophyll (Chl) a/c‐binding proteins (FCPs) were specifically degraded in thylakoid membranes. The PSI subunits, PsaA and PsaB, were slowly degraded, and cytochrome f was barely degraded. Using zymography, proteolytic activities for three metalloproteases (116, 83, and 75 kDa) and one serine protease (156 kDa) were detected in thylakoid membranes. Two FCP fractions (FCP-A and FCP-B/C) and a photosystem fraction were separated by sucrose gradient centrifugation using dodecyl maltoside‐solubilized thylakoids. The FCP-A fraction featured enriched Chl c compared with the bulk of FCP-B/C. Zymography revealed that 116, 83, and 94 kDa metalloproteases were mostly in the FCP-A fraction along with the 156 kDa serine protease. When solubilized thylakoids were separated with clear-native PAGE, zymography detected only the 83 kDa metalloprotease in the FCP-A band. Because FCP-A is selectively associated with PSII, these FCP-A-associated metalloproteases and serine protease may be responsible for the proteolytic degradation of FCPs and PSII in thylakoid membranes.  相似文献   

3.
《Aquatic Botany》2007,86(4):353-360
The influence of cadmium (Cd) on physiological and biochemical parameters was studied to elucidate the mechanism of Cd resistance in Phragmites australis. Cadmium concentrations in roots, stems and leaves increased with exogenous Cd concentration, but Cd content in roots was much higher than in shoots. X-ray microanalysis was used to reveal compartments in which Cd accumulated in root cortex. Cadmium concentrations followed a gradient with the sequence: intercellular space > cell wall > vacuole > cytoplasm, indicating that most Cd was immobilized in the apoplast or sequestered into the vacuolar lumen. Sequential extraction of various Cd chelates revealed that more than half of extractable Cd was bound to proteins, whereas 26% was bound to organic acids. Cd-binding protein fractions were found in the roots after gel filtration chromatography, among which a polypeptide with an apparent molecular mass of 14 kDa bound Cd most avidly. One newly synthesized polypeptide of low molecular mass (1 kDa) appeared under Cd pollution, whereas a prominent fraction of 72 kDa disappeared. Four aldehyde oxidase (AO) isoenzyme activities increased significantly in roots under Cd pollution. Cd stress also enhanced xanthine dehydrogenase (XDH) activities in roots. Two AO polypeptides of different molecular sizes were detected in the roots by Western blot assay. The abundance of the 160 kDa subunit correlated with Cd stress, but the amount of the 90 kDa polypeptide did not change under Cd treatment. Enhanced abscisic acid (ABA) contents were observed in roots of P. australis exposed to Cd. The involvement of Cd distribution in plant tissues and subcellular compartments and of AO and XDH enzymatic activities in the acclimation mechanism of P. australis to Cd pollution is discussed herein.  相似文献   

4.
Three-phase partitioning (TPP) was used to isolate trypsin inhibitors from navy bean (NB), red kidney bean (RK) and adzuki bean (AZ) from the Royal Project Foundation in Thailand. The method was to mix the crude extract with solid ammonium sulfate (30% saturation, w/v) and tert-butanol (t-butanol) in order to obtain the three phases. The trypsin inhibitor was purified to 5-, 14- and 7-fold with 315%, 441% and 228% recovery for NB, RK and AZ, respectively. The SDS-PAGE showed the major inhibitor band with the molecular weights (MWs) of 132, 118 and 13 kDa for NB, RK and AZ, respectively. The fractions from NB and AZ showed higher pH stability compared to that of the RK, and they had the optimum pH ranges of 7–9. The highest relative inhibitory activity of the fractions of NB and RK were found at 50 °C, and all fractions were quite stable at 90 °C for 60 min of incubation. Increasing the concentration of salt (up to 3%, w/v) did not significantly decrease the inhibitory activity of all fractions (p > 0.05). The trypsin inhibitors from the three legumes were unable to inhibit the autolysis of Pacific whiting and arrowtooth flounder muscles.  相似文献   

5.
BackgroundCrystallin fragments are known to aggregate and cross-link that lead to cataract development. This study has been focused on determination of post-translational modifications (PTMs) of human lens crystallin fragments, and their aggregation properties.MethodsFour crystallin fragments-containing fractions (Fraction I [~3.5 kDa species], Fraction II [~3.5–7 kDa species], Fraction III [~7–10 kDa species] and Fraction IV [>10–18 kDa species]), and water soluble high molecular weight (WS-HMW) protein fraction were isolated from water soluble (WS) protein fraction of human lenses of 50–70 year old-donors. The crystallin fragments of the Fractions I–IV were separated by two-dimensional (2D)-gel electrophoresis followed by analysis of their gel-spots by mass spectrometry. The Fractions I–IV were examined for their molecular mass, particle-diameters, amyloid fibril formation, and for their aggregation by themselves and with WS-HMW proteins.ResultsCrystallin fragments in Fractions I–IV were derived from α-, β- and γ-crystallins, and their 2D-gel separated spots contained multiple crystallins with PTMs such as oxidation, deamidation, methylation and acetylation. Crystallin fragments from all the four fractions exhibited self-aggregated complexes ranging in Mr from 5.5×105 to 1.0×108 Da, with diameters of 10–28 nm, and amyloid fibril-like formation, and aggregation with WS-HMW proteins.ConclusionThe crystallin fragments exhibited several PTMs, and were capable of forming aggregated species by themselves and with WS-HMW proteins, suggesting their potential role in aggregation process during cataract development.General significanceCrystallin fragments play a major role in human cataract development.  相似文献   

6.
《Plant science》2007,172(3):579-587
Tryptophanins (TRPs) are low molecular weight, tryptophan-rich, basic proteins found in oat (Avena sativa L.) seeds. Like their counterpart puroindolines (PINs) from wheat (Triticum aestivum L.), TRPs are thought to be involved in flour softness as well as disease resistance against phytopathogenic fungi. PINs are known to be the major components of ‘friabilin’ associated with the surface of water washed starch grains and possess lipid binding properties. Two polyclonal antisera against puroindoline-a (PIN-a), and puroindoline-b (PIN-b) respectively; and a monoclonal antiserum raised against ‘friabilin’ were used as primary antibodies in immunoblotting experiments. All antisera detected immunoreactive polypeptides, with approximate relative masses of 15–16 kDa, in oat, wheat, and barley (Hordeum vulgare L.) seed extracts but not in rice (Oryza sativa L.), maize (Zea mays L.), bean (Phaseolus vulgaris L.), pea (Pisum sativum L.) and lentil (Lens culinaris Medic.) seed extracts. Immunoreactive polypeptides were detected in aqueous ethanol [52% (v/v) ethanol] seed extracts. Both anti-‘friabilin’ monoclonal and anti-PIN-b polyclonal antisera recognized 15 as well as 16 kDa tryptophanins in oat seeds from different cultivars. On the other hand, anti-PIN-a polyclonal antiserum strongly cross-reacted with 16 kDa TRP and weakly with 15 kDa TRP. Tryptophanins were found to be associated with the surface of starch grains in oat endosperm tissue using both fluorescence and confocal laser scanning microscopies with anti-‘friabilin’ monoclonal antiserum. SDS-PAGE and immunoblotting assays revealed a gradual synthesis of TRPs as early as milk stage in developing oat seeds. On the other hand, TRPs tend to undergo degradation during seed germination.  相似文献   

7.
The structure and stability of the fluorescent protein monomeric Kusabira Orange (mKO), a GFP-like protein, was studied under different pressure levels and in different chemical environments. At different pH values (between pH 7.4 and pH 4.0) and under a pressure up to 600 MPa (at 25 °C), mKO did not show significant fluorescence spectral changes, indicating a structural stability of the protein. In more extreme chemical conditions (at pH 4.0 in the presence of 0.8 M guanidine hydrochloride), a marked reduction of mKO fluorescence intensity emission was observed at pressures above 300 MPa. This fluorescence emission quenching may be due to the loss of the intermolecular bonds and, consequently, to the destructuration of the mKO chromophore structure. Since the electrostatic and hydrophobic interactions as well as the salt bridges present in proteins are usually perturbed under high pressure, the reduction of mKO fluorescence intensity emission is associated to the perturbation of the protein salt bridges network.  相似文献   

8.
A novel extracellular α-galactosidase, named Aga-F78, from Rhizopus sp. F78 ACCC 30795 was induced, purified and characterized in this study. This soybean-inducible α-galactosidase was purified to homogeneity by ammonium sulfate precipitation and fast protein liquid chromatography (FPLC), with a yield of 14.6% and a final specific activity of 74.6 U mg−1. Aga-F78 has an estimated relative molecular mass of 78 kDa from SDS-PAGE while native mass of 210 kDa and 480 kDa from non-denaturing gradient PAGE. This α-galactosidase had no N- or O-glycosylated. Amino acid sequences of three internal fragments were determined, and fragment 1, NQLVLDLTR, shared high homology with bacterial and fungal GH-36 α-galactosidases. The optimum pH and temperature on activity of Aga-F78 were 4.8 and 50 °C, respectively. The properties of pH and temperature stability, effect of ions and chemicals were also studied. Furthermore, the resistant to neutral and alkaline proteases and substrate specificity of natural substrates (melibiose, raffinose, stachyose and guar gum) were also studied to enlarged the application of Aga-F78 in more fields. Kinetic studies revealed a Km and Vmax of 2.9 mmol l−1 and 246.1 μmol (mg min)−1, respectively, using pNPG as substrate. To our knowledge, this is the first report of purification and characterization of α-galactosidase from Rhizopus with some special properties, which may aid its utilization in the food and feed industries.  相似文献   

9.
《Process Biochemistry》2014,49(9):1440-1447
Functional expression of a thermostable phytase from A. niger was achieved in Kluyveromyces lactis GG799 cells. Effective secretion of recombinant enzyme (198 U ml−1) in the fermentation broth at 72 h incubation at 22 °C was obtained. Purified enzyme showed a specific activity of 72 U mg−1) and was detected on SDS-PAGE as a heavily glycosylated protein with a molecular weight of ≥140 kDa. Optimum temperature of the enzyme was at 55 °C and it showed a characteristic bi-hump pH profile with two pH optima (at pH 2.5 and 5.5). Enzyme showed considerable pepsin resistance with 60% activity retention after incubation with pepsin at the ratio of 1:1000. Enzyme was thermostable retaining 69 and 37% activity at 90 and 100 °C for 10 min respectively and remained active at these temperatures till 1 h. Deglycosylation studies demonstrated negligible effect of N-linked glycans on thermal properties. Multiple sequence alignment data revealed a conserved Asn at position 345 of this phytase which might contribute to its thermal properties. This thermostable phytase coupled with its noticeable protease resistance could be a better alternative to current commercial phytases.  相似文献   

10.
Corn fiber was chemically modified with ion-exchanging groups to prepare water-soluble polysaccharides. The soluble fractions were dialyzed using dialysis tubing (1 kDa) and the material retained inside the tubing was filtered through 10 kDa membranes to separate into fractions with molar mass of 1–10 kDa and greater than 10 kDa. The yield of solubilized material of molar mass higher than 10 kDa (47%) and 1–10 kDa (17%) obtained by sulfonation in the presence of NaOH under vacuum was greater than the yields of the treatment at the ambient pressure (43% and 2%) and also in experiments run with only KOH (40% and 5%) or NaOH (38% and 5%) at ambient pressure. The sugar analysis indicated that they were typical glucuronogalactoarabinoxylans containing 46–57% d-xylose (Xyl), 25–33% l-arabinose (Ara) and 6–12% d-galactose (Gal).  相似文献   

11.
《Process Biochemistry》2007,42(7):1150-1154
The gene encoding a family 5 endoglucanase, cel5A, was cloned from the moderate thermophile Bacillus licheniformis strain B-41361. The primary structure of the translated cel5A gene predicts a 49 amino acid putative secretion signal and a 485 residue endoglucanase consisting of an N-terminal family 5 catalytic domain and C-terminal family 3 cellulose binding domain. The endoglucanase portion of the gene was expressed in Escherichia coli, but soluble activity in cell lysates was due to a truncated enzyme with an apparent mass of 42 kDa, the equivalent of the predicted catalytic domain. Insoluble protein renatured from inclusion bodies was protected against truncation, yielding an active holoenzyme (rCel5A) with apparent mass of 62 kDa. The recombinant rCel5A was optimally active at 65 °C and pH 6.0, but retained only 10% activity after 1 h incubation at this temperature. At 55 °C, rCel5A had a broad pH range for activity and stability, with greater than 75% relative activity from pH 4.5–7.0, and retaining greater than 80% relativity activity across the range pH 4.5–8.0 following 1 h incubation at 55 °C. It readily hydrolyzed pNPC, carboxymethylcellulose, barley β-glucan, and lichenan, but despite binding to cellulose, had only weak activity against avicel. Hydrolysis products from soluble polysaccharides included glucose, cellobiose, cellotriose, and cellotetraose. The catalytic properties, broad pH range and thermostability of the recombinant B. licheniformis endoglucanase may prove suitable for industrial applications.  相似文献   

12.
《Process Biochemistry》2010,45(4):507-513
The extracellular laccase produced by the ascomycete Trichoderma atroviride was purified and characterized and its ability to transform phenolic compounds was determined. The purified laccase had activity towards typical substrates of laccases including 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), dimethoxyphenol (2,6-DMP), syringaldazine and hydroquinone. The enzyme was a monomeric protein with an apparent molecular mass of 80 kDa and an isoelectric point of 3.5. The pH optima for the oxidation of ABTS and 2,6-DMP were 3 and 5, respectively, and the optimum temperature was 50 °C with 2,6-DMP. The laccase was stable at slightly acidic pH (4 and 5). It retained 80% of its activity after 4 h incubation at 40 °C. Under standard assay conditions, Km values of the enzyme were 2.5 and 1.6 mM towards ABTS and 2,6-DMP, respectively. This enzyme was able to oxidize aromatic compounds present in industrial and agricultural wastewater, as catechol and o-cresol, although the transformation of chlorinated phenols required the presence of ABTS as mediator.  相似文献   

13.
Trypsin from L. alexandri was purified using only two purification processes: ammonium sulfate precipitation and anion exchange liquid chromatography in DEAE-Sepharose. Trypsin mass was estimated as 24 kDa through SDS-PAGE, which showed only one band in silver staining. The purified enzyme showed an optimum temperature and pH of 50 °C and 9.0, respectively. Stability was well maintained, with high levels of activity at a pH of up to 11.0, including high stability at a temperature of up to 50 °C after 60 min of incubation. The inhibition test demonstrated strong inhibition by PMSF, a serine protease inhibitor, and Kinetic constants km and kcat for BAPNA were 0.517 mM and 5.0 S?1, respectively. The purified enzyme was also as active as casein, as analyzed by zymography. Therefore, we consider trypsin a promising enzyme for industrial processes, owing to its stability in a wide range of pH and temperature and activity even under immobilization.  相似文献   

14.
The kinetic folding of β2-microglobulin from the acid-denatured state was investigated by interrupted-unfolding and interrupted-refolding experiments using stopped-flow double-jump techniques. In the interrupted unfolding, we first unfolded the protein by a pH jump from pH 7.5 to pH 2.0, and the kinetic refolding assay was carried out by the reverse pH jump by monitoring tryptophan fluorescence. Similarly, in the interrupted refolding, we first refolded the protein by a pH jump from pH 2.0 to pH 7.5 and used a guanidine hydrochloride (GdnHCl) concentration jump as well as the reverse pH jump as unfolding assays. Based on these experiments, the folding is represented by a parallel-pathway model, in which the molecule with the correct Pro32 cis isomer refolds rapidly with a rate constant of 5–6 s? 1, while the molecule with the Pro32 trans isomer refolds more slowly (pH 7.5 and 25 °C). At the last step of folding, the native-like trans conformer produced on the latter pathway isomerizes very slowly (0.001–0.002 s? 1) into the native cis conformer. In the GdnHCl-induced unfolding assays in the interrupted refolding, the native-like trans conformer unfolded remarkably faster than the native cis conformer, and the direct GdnHCl-induced unfolding was also biphasic, indicating that the native-like trans conformer is populated at a significant level under the native condition. The one-dimensional NMR and the real-time NMR experiments of refolding further indicated that the population of the trans conformer increases up to 7–9% under a more physiological condition (pH 7.5 and 37 °C).  相似文献   

15.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

16.
Hybrid antibacterial peptide CecropinAD (CAD) is a linear cationic peptide that has potent antimicrobial properties without hemolytic activity. To explore a new approach to express the hybrid peptide CAD in the methylotrophic yeast Pichia pastoris, the cDNA sequence encoding CAD was obtained by recursive PCR (rPCR) and cloned into the vector pPICZα-A. The Sac I-linearized recombinant plasmid pPICZα-CAD was transformed into P. pastoris GS115 by electroporation. Expression of recombinant CAD was induced for 96 h with 1.0% methanol at 28 °C, pH 5.0. The recombinant CAD was purified by two steps of reversed-phase HPLC and 1.8 mg pure active CAD was obtained from 100 ml culture. Tricine-SDS-PAGE and mass spectrometry analyses demonstrated that the molecular weight of the purified CAD was 3.8 kDa. Analysis of circular dichroism (CD) revealed that CAD mainly has α-helixes in the presence of 10 mM phosphate buffer (pH 7.2), 50% TFE/water solution (pH 2.0), or 30 mM SDS (pH 10.8). FACScan analysis showed that the antibacterial mechanism of CAD is to act on the cell membrane to disrupt bacterial cell structure. Antimicrobial assays demonstrated that recombinant CAD has a broad spectrum of anti-microbial property against fungi, as well as Gram-positive and Gram-negative bacteria, but does not have hemolytic activity against human erythrocytes. Our results suggest that recombinant antimicrobial peptide CAD may serve as an attractive candidate for the development of therapeutic antimicrobial drugs.  相似文献   

17.
A human interleukin-17A (IL-17A) variant was overexpressed in Escherichia coli BL21 (DE3) under the control of a T7 promoter. The resulting insoluble inclusion bodies were isolated and solubilized by homogenization with 6 M guanidine HCl. The denatured recombinant human IL-17A variant was refolded in 20 mM Tris–HCl, pH 9.0, 500 mM arginine, 500 mM guanidine HCl, 15% glycerol, 1 mM cystamine, and 5 mM cysteine at 2–8 °C for 40 h. The refolded IL-17A variant was subsequently purified using a combination of cation-exchange, reversed-phase and fluoroapatite chromatography. The final purified product was a monodisperse and crystallizable homodimer with a molecular weight of 30,348.3 Da. The protein was active in both receptor binding competition assay and IL-17A-dependent biological activity assay using human dermal fibroblasts.  相似文献   

18.
A mesophilic bacterium, Aeromonas veronii PG01, isolated from industrial wastes produced an extracellular thermostable organic solvent tolerant protease. The optimum condition for cell growth and protease production was pH 7.0 and 30 °C. The protease produced was purified 53-fold to homogeneity with overall yield of 32%, through ammonium sulphate precipitation, ion-exchange and gel permeation chromatography (GPC). The molecular weight, as determined by GPC–HPLC, was found to be about 67 kDa. SDS-PAGE revealed that the enzyme consisted of two subunits, with molecular weight of 33 kDa. The protease was active in broad range of pH from 6.0 to 10.0 with optimum activity at pH 7.5. The optimum temperature for this protease was 60 °C. The enzyme remained active after incubation at 50–60 °C for 1 h. This enzyme was stable and active after incubation with benzene and it was activated 1.3- and 1.5-fold by n-hexane and n-dodecane, respectively. This protease was inhibited completely by the classic metalloprotease inhibitor 1,10-phenanthroline and partially by the metal chelator EDTA but not by the serine protease inhibitor PMSF. The PG01 protease was found to contain 1.901 mol of zinc per mole of enzyme upon analysis by Inductively coupled plasma-optical emission spectroscopy. The thermostable and solvent tolerance property make it an attractive and promising biocatalyst for enzyme mediated synthesis.  相似文献   

19.
The proteome of Hevea brasiliensis latex has been explored in depth via combinatorial peptide ligand libraries. A total of 300 unique gene products have been identified in this latex, whose proteome has been largely unknown up to the present. In search for unknown allergens, control latex and eluates from the ligand libraries have been fractionated by two-dimensional mapping, blotted and confronted with sera of 18 patients. In addition to the already known and named Hevea major allergens, we have unambiguously detected several others like, for instance: heat shock protein (81 kDa), proteasome subunit (30 kDa), protease inhibitor (8 kDa), hevamine A (43 kDa) and glyceraldehyde-3-phosphate dehydrogenase (37 kDa). Gene Ontology analysis of analyzed fractions has shown that major functions are substantially unchanged after sample treatment, while novel biological functions appeared that were undetectable in the crude sample.  相似文献   

20.
A xanthine oxidase (XOD) was expressed, purified and partially characterized from Arthrobacter sp. with a negative immune protocol. To determine the optimal inducer for XOD, xanthine, hypoxanthine and uric acid were added into the medium of cultivation. The results revealed that with the inducement of about 14 mM xanthine, the highest XOD activity could be detected. To separate XOD from Arthrobacter sp., the cells were first cultured without any inducement; then the total proteins of the collected cells were extracted and immunized to rabbits for the polyclonal antibodies. These antibodies were then coupled with sepharose CL 6 B, and the medium was further employed to deplete most of the cells’ back ground proteins. Began with ~20 mg crude protein from disrupted cells was subjected to the antibody medium, and ~1.45 mg protein was detected in unbinding fractions with ~92.0% of activity. The extracted xanthine oxidase was ~85% pure with native-PAGE analysis, and ~90% pure with SDS-PAGE analysis, the yield of protein was ~7.4%. The specific activity of the enzyme was 36.0 U/mg. The native enzyme should be a dimer (~280 kDa) of a protein composed with two different peptides with the mass of approximately 55.5 and 85.5 kDa, respectively. The optimal pH and temperature of this enzyme were determined at about pH 7 and 50 °C. Furthermore, EDTA revealed almost no influences on the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号