首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The contribution of oxidative stress to the pathophysiology of depression has been described in numerous studies. Particularly, an increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can lead to neuronal cell death. Human neuroblastoma SH-SY5Y cells were used to investigate the neuroprotective effect of the antidepressant duloxetine against rotenone-induced oxidative stress. SH-SY5Y cells were pretreated with duloxetine (1–5 µM) for 24 h followed by a 24-h rotenone exposure (10 µM). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor LY294002 (10 µM) and the heme oxygenase 1 (HO-1) inhibitor zinc protoporphyrin IX-ZnPP (5 µM) were added to cultures 1 h prior duloxetine treatments. After treatments cell viability and ROS generation were assessed. NF-E2-related factor-2 (Nrf2) nuclear translocation was assessed by immunofluorescent staining after 4 and 8 h of duloxetine incubation. Furthermore, the Nrf2 and HO-1 mRNA expression was carried out after 4–48 h of duloxetine treatment by qRT-PCR. Duloxetine pretreatment antagonized rotenone-induced overproduction of ROS and cell death in SH-SY5Y cells. In addition, a 1-h pretreatment with LY294002 abolished duloxetine’s protective effect. Duloxetine also induced nuclear translocation of the Nrf2 and the expression of its target gene, HO-1. Finally, the HO-1 inhibitor, ZnPP, suppressed the duloxetine protective effect. Overall, these results indicate that the mechanism of duloxetine neuroprotective action against oxidative stress and cell death might rely on the Akt/Nrf2/HO-1 pathways.  相似文献   

3.
4.
Hwang YP  Jeong HG 《FEBS letters》2008,582(17):2655-2662
In this study, we investigated the mechanisms of kahweol protection of neuronal cells from cell death induced by the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA). Pretreatment of SH-SY5Y cells with kahweol significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Kahweol also up-regulated heme oxygenase-1 (HO-1) expression, which conferred neuroprotection against 6-OHDA-induced oxidative injury. Moreover, kahweol induced PI3K and p38 activation, which are involved in the induction of Nrf2, HO-1 expression, and neuroprotection. These results suggest that regulation of the anti-oxidant enzyme HO-1 via the PI3K and p38/Nrf2 signaling pathways controls the intracellular levels of ROS.  相似文献   

5.
6.
7.
Li H  Wang F  Zhang L  Cao Y  Liu W  Hao J  Liu Q  Duan H 《Cellular signalling》2011,23(10):1625-1632
Reactive oxygen species (ROS) play an important role in the pathogenesis of diabetic nephropathy. Nuclear factor erythroid 2-related factor 2 (Nrf2) can up-regulate the expression of antioxidant genes and protect cells from oxidative damage. The current study is aimed at examining the effect of modulation of Nrf2 expression on high glucose-induced oxidative stress and Nrf2-targeting antioxidant expression in mouse mesangial cells. In this study, mouse mesangial cells were transiently transfected with Nrf2-plasmid or the Nrf2-specific siRNA. The high glucose-induced intracellular ROS, malondialdehyde, cell proliferation, and TGF-β1 secretion were measured. The levels of Nrf2, heme oxygenase-1 (HO-1), γ-glutamylcysteine synthethase (γ-GCS) expression, and nuclear expression of Nrf2 in mouse mesangial cells were determined. We found that high glucose induced ROS and malondialdehyde generation in mouse mesangial cells. Induction of Nrf2 over-expression reduced the high glucose-induced ROS and malondialdehyde production, inhibited cell proliferation and TGF-β1 secretion, accompanied by up-regulating the expressions of HO-1 and γ-GCS in mouse mesangial cells. However, knockdown of Nrf2 expression displayed reverse effects in mouse mesangial cells. All these results indicated that Nrf2 and its downstream antioxidants, HO-1 and γ-GCS, are negative regulators of high glucose-induced ROS-related mouse mesangial cell dysfunction.  相似文献   

8.
氧化应激是诱导性多能干细胞(induced pluripotent stem cell, iPSC)在培养和应用中遇到的一个关键问题,探讨其作用机制具有重要的理论和实践意义。目前有关iPSC氧化应激的研究相对较少,Nrf2/HO-1信号通路在其中的作用尚不明了。因此,本研究以不同浓度的H2O2(100、200、300、400 μmol/L)处理人iPSC(hiPSC),分别在4 h和24 h于倒置显微镜下观察hiPSC及其饲养层细胞SNL氧化损伤的程度,通过碱性磷酸酶(alkaline phosphatase, AP)试剂盒和超氧化物阴离子荧光探针,分别检测hiPSC多能性和细胞活性氧(reactive oxygen species, ROS)水平,并通过qRT-PCR检测H2O2处理4 h后早期应激状态下Nrf2和HO 1 mRNA的表达水平,免疫细胞化学和Western印迹检测p-Nrf2和HO-1蛋白质的表达量。结果表明:hiPSC和SNL细胞的ROS水平呈H2O2剂量依赖性升高。除了100 μmol/L H2O2组hiPSC的细胞形态和多能性保持较好外,其余浓度H2O2均导致hiPSC出现不同程度损伤和死亡。但与SNL细胞相比,hiPSC中ROS水平相对较低,细胞状态也相对较好。SNL细胞中Nrf2和HO-1-mRNA表达的变化幅度与H2O2浓度呈线性相关,而hiPSC中Nrf2和HO-1表达的变化幅度与H2O2浓度之间并未呈现线性相关,其中Nrf2在100 μmol/L H2O2组表达量最高,而HO-1在200 μmol/L H2O2组表达量最高,意味着hiPSC氧化应激调控机制的复杂性。综上结果表明,hiPSC具有较好的抗氧化能力,其相关机制与Nrf2/HO-1信号通路有关,同时也可能涉及到其它相关通路的交互作用。  相似文献   

9.
10.
11.
Reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelial (RPE) cells, which is known as one major cause of age-related macular degeneration. Salvianolic acid A (Sal A) is the main effective aqueous extract of Salvia miltiorrhiza. The aim of this study was to test the potential role of Sal A against oxidative stress in cultured RPE cells and to investigate the underlying mechanistic signaling pathways. We observed that Sal A significantly inhibited hydrogen peroxide (H2O2)-induced primary and transformed RPE cell death and apoptosis. H2O2-stimulated mitogen-activated protein kinase activation, ROS production, and subsequent proapoptotic AMP-activated protein kinase activation were largely inhibited by Sal A. Further, Sal A stimulation resulted in a fast and dramatic activation of Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, followed by phosphorylation, accumulation, and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with increased expression of the antioxidant-response element-dependent gene heme oxygenase-1 (HO-1). Both Nrf2 and HO-1 were required for Sal A-mediated cytoprotective effect, as Nrf2/HO-1 inhibition abolished Sal A-induced beneficial effects against H2O2. Meanwhile, the PI3K/Akt/mTORC1 chemical inhibitors not only suppressed Sal A-induced Nrf2/HO-1 activation, but also eliminated its cytoprotective effect in RPE cells. These observations suggest that Sal A activates the Nrf2/HO-1 axis in RPE cells and protects against oxidative stress via activation of Akt/mTORC1 signaling.  相似文献   

12.
Induction of phase II antioxidant enzymes by activation of Nrf2/ARE (antioxidant response element) signaling has been considered as a promising strategy to combat with oxidative stress-related diseases. In the present study, we tested for potential effects of sesamin, a major lignan contained in sesame seeds, its stereoisomer episesamin, and their metabolites on Nrf2/ARE activation in rat pheochromocytoma PC12 cells. Luciferase reporter assays showed that primary metabolites of sesamin and episesamin, SC-1 and EC-1 were the most potent ARE activators among all tested compounds. SC-1 {(1R,2S,5R,6S)-6-(3,4-dihydroxyphenyl)-2-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo-[3,3,0]octane} enhanced nuclear translocation of Nrf2 and up-regulated expression of phase II antioxidant enzymes including heme oxygenase-1 (HO-1). Treatment with SC-1 resulted in increased phosphorylation of p38 MAP kinase and transient increase in intracellular ROS levels. N-acetylcysteine (NAC) treatment abolished p38 phosphorylation as well as HO-1 induction caused by SC-1, indicating that ROS are upstream signals of p38 in Nrf2/ARE activation by SC-1. Furthermore, preconditioning with SC-1 attenuated H(2)O(2)-induced cell death in a dose-dependent manner. Finally, treatment with a HO-1 inhibitor, Zn-protoporphyrin (ZnPP), and overexpression of a dominant-negative mutant of Nrf2 diminished SC-1-mediated neuroprotection. Our results demonstrate that SC-1 is capable of protecting against oxidative stress-induced neuronal cell death in part through induction of HO-1 via Nrf2/ARE activation, suggesting its potential to reduce oxidative stress and ameliorate oxidative stress-related neurodegenerative diseases.  相似文献   

13.
LL202, a newly synthesized flavonoid derivative, has been confirmed to inhibit the mitogen-activated protein kinase pathway and activation protein-1 activation in monocytes; however, the anti-inflammatory mechanism has not been clearly studied. Uncontrolled overproduction of reactive oxygen species (ROS) has involved in oxidative damage of inflammatory bowel disease. In this study, we investigated that LL202 reduced lipopolysaccharide (LPS)-induced ROS production and malondialdehyde levels and increased superoxide dismutase, glutathione, and total antioxidant capacity in RAW264.7 cells. Mechanically, LL202 could upregulate heme oxygenase-1 (HO-1) via promoting nuclear translocation of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) to regulate LPS-induced oxidative stress in macrophages. In vivo, we validated the role of LL202 in dextran sulfate sodium- and TNBS-induced colitis models, respectively. The results showed that LL202 decreased the proinflammatory cytokine expression and regulated colonic oxidative stress by activating the Nrf2/HO-1 pathway. In conclusion, our study showed that LL202 exerts an anti-inflammatory effect by enhancing the antioxidant capacity of the Nrf2/HO-1 pathway to macrophages.  相似文献   

14.
目的:研究连翘酯苷A(Forsythiaside A,FA)对缺血再灌注引起的脑细胞损伤的保护作用及机制.方法:采用PC12细胞缺氧再复氧模型(OGD/R),细胞分组为正常组,模型组,FA处理组(1.25,2.5和5μmol/L),测定细胞存活率、凋亡率、ROS、MDA以及抗氧化酶水平.采用Western blotti...  相似文献   

15.
16.
The Nrf2/ARE pathway plays a pivotal role in chemoprevention and neuroprotection. Here, we report that sesquiterpene lactones extracted from Calea urticifolia and feverfew increased enhancer activity of the ARE. ARE activation was dependent on the number of α,β-unsaturated carbonyl groups each compound bears and calealactone A (CL-A) harboring 3 of those was the most potent ARE inducer. At subtoxic doses, CL-A induced expression of heme oxygenase-1 (HO-1) gene, one of ARE target genes, through activation of the Nrf2/ARE pathway involving transient ROS generation and activation of PI3-K/Akt and MAPK pathways. Interestingly, H2O2-induced ARE activation and HO-1 induction were potentiated by pretreatment with CL-A at lower concentrations, at which Nrf2/ARE activation by the compound was minimal. These results suggest a possibility that preconditioning by sesquiterpene lactone may enhance activation of the Nrf2/ARE pathway and induction of phase II detoxification/antioxidant enzymes upon oxidative stress, thereby resulting in increased resistance to oxidative damage.  相似文献   

17.
Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.  相似文献   

18.
Acute lung injury (ALI) is a complication of severe acute pancreatitis (SAP). Sitagliptin (SIT) is a DPP4 inhibitor that exerts anti-inflammatory and antioxidant effects; however, its mechanism of action in SAP-ALI remains unclear. In this study, we investigated the effects of SIT on SAP-ALI and the specific pathways involved in SAP-induced lung inflammation, including oxidative stress, autophagy, and p62–Kelch-like ECH-associated protein 1 (Keap1)–NF-E2-related factor 2 (Nrf2) signalling pathways. Nrf2 knockout (Nrf2−/−) and wild-type (WT) mice were pre-treated with SIT (100 mg/kg), followed by caerulein and lipopolysaccharide (LPS) administration to induce pancreatic and lung injury. BEAS-2B cells were transfected with siRNA-Nrf2 and treated with LPS, and the changes in inflammation, reactive oxygen species (ROS) levels, and autophagy were measured. SIT reduced histological damage, oedema, and myeloperoxidase activity in the lung, decreased the expression of pro-inflammatory cytokines, and inhibited excessive autophagy and ROS production via the activation of the p62–Keap1–Nrf2 signalling pathway and promotion of the nuclear translocation of Nrf2. In Nrf2-knockout mice, the anti-inflammatory effect of SIT was reduced, resulting in ROS accumulation and excessive autophagy. In BEAS-2B cells, LPS induced ROS production and activated autophagy, further enhanced by Nrf2 knockdown. This study demonstrates that SIT reduces SAP-ALI-associated oxidative stress and excessive autophagy through the p62–Keap1–Nrf2 signalling pathway and nuclear translocation of Nrf2, suggesting its therapeutic potential in SAP-ALI.Subject terms: Macroautophagy, Acute pancreatitis  相似文献   

19.
β-Glucan from Saccharomyces cerevisiae has been described to be effective antioxidants, but the specific antioxidation mechanism of β-glucan is unclear. The objectives of this research were to determine whether the β-glucan from Saccharomyces cerevisiae could regulate oxidative stress through the Dectin-1/Nrf2/HO-1 signaling pathway in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. In this study, we examined the effects of β-glucan on the enzyme activity or production of oxidative stress indicators in LPS-stimulated RAW264.7 cells by biochemical analysis and the protein expression of key factors of Dectin-1/Nrf2/HO-1 signaling pathway by immunofluorescence and western blot. The biochemical analysis results showed that β-glucan increased the LPS-induced downregulation of enzyme activity of intracellular heme oxygenase (HO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) while decreasing the production of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, immunofluorescence results showed that β-glucan can activate the nuclear factor erythroid 2-related factor 2 (Nrf2). The antioxidant mechanism study indicated that β-glucan activated dendritic-cell-associated C-type lectin 1 (Dectin-1) receptors mediated Nrf2/HO-1 signaling pathway, thereby downregulating the production of ROS and thus produced the antioxidant effects in LPS-stimulated RAW 264.7 cells. In conclusion, these results indicate that β-glucan potently alleviated oxidative stress via Dectin-1/Nrf2/HO-1 in LPS-stimulated RAW 264.7 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号