首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We estimate the global bioenergy potential from dedicated biomass plantations in the 21st century under a range of sustainability requirements to safeguard food production, biodiversity and terrestrial carbon storage. We use a process‐based model of the land biosphere to simulate rainfed and irrigated biomass yields driven by data from different climate models and combine these simulations with a scenario‐based assessment of future land availability for energy crops. The resulting spatial patterns of large‐scale lignocellulosic energy crop cultivation are then investigated with regard to their impacts on land and water resources. Calculated bioenergy potentials are in the lower range of previous assessments but the combination of all biomass sources may still provide between 130 and 270 EJ yr?1 in 2050, equivalent to 15–25% of the World's future energy demand. Energy crops account for 20–60% of the total potential depending on land availability and share of irrigated area. However, a full exploitation of these potentials will further increase the pressure on natural ecosystems with a doubling of current land use change and irrigation water demand. Despite the consideration of sustainability constraints on future agricultural expansion the large‐scale cultivation of energy crops is a threat to many areas that have already been fragmented and degraded, are rich in biodiversity and provide habitat for many endangered and endemic species.  相似文献   

2.
陕北煤炭基地榆神矿区生态系统弹性力时空演变分析   总被引:2,自引:1,他引:1  
陕北榆神矿区是我国重要的煤炭生产基地,生态环境脆弱,分析煤炭开采对该区域生态系统稳定性的影响对矿区生态修复具有重要意义。以榆神矿区所在流域为研究对象,基于近10年土地利用确定了工矿活动直接和间接影响区的时空演变特征,通过建立生态弹性力指标体系,结合空间主成分分析法综合评估了工矿活动对矿区生态系统弹性力的影响。结果表明:(1)近10年研究区生态环境明显改善,林地草地面积明显增加,但是煤炭开发用地也大幅增加,从8.4 km2增加至14.2 km2;(2)榆神矿区生态系统弹性力主要受植被覆盖度和地下径流量的影响,2009-2015年,煤炭开发直接影响区和间接影响区生态弹性力呈下降趋势,相比之下,2018年煤炭开发不同影响区生态弹性力明显增加;(3)煤炭开采活动引发的地质环境问题致使矿区生态环境退化,导致煤炭开发直接影响区生态弹性力低于间接影响区,平均低9.23%,因此及时采取修复治理措施降低煤炭开发引起的地质环境问题对改善矿区生态环境至关重要。研究结果可为榆神矿区的生态保护管理与健康可持续发展提供决策参考。  相似文献   

3.

Purpose  

This study’s aim was to understand the effect of mine characteristics on cradle-to-gate life cycle impacts of surface coal mining in the USA. Five bituminous coal strip mines were used as case studies. The study assessed the life cycle water use, land use, energy use, abiotic resource depletion, and climate change impacts.  相似文献   

4.
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr?1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr?1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.  相似文献   

5.
Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the 100 of the world's worst invasive species defined by the International Union for the Conservation of Nature, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity.  相似文献   

6.
Background, Aims and Scope  On 4–5 June 2007, an international conference was held in Copenhagen. It provided an interdisciplinary forum where economists and geographers met with LCA experts to discuss the challenges of modelling the ultimate land use changes caused by an increased demand for biofuels. Main Features  The main feature of the conference was the cross-breeding of experience from the different approaches to land use modelling: The field of LCA could especially benefit from economic modelling in the identification of marginal crop production and the resulting expansion of the global agricultural area. Furthermore, the field of geography offers insights in the complexity behind new land cultivation and practical examples of where this is seen to occur on a regional scale. Results  Results presented at the conference showed that the magnitude and location of land use changes caused by biofuels demand depend on where the demand arises. For instance, mandatory blending in the EU will increase land use both within and outside of Europe, especially in South America. A key learning for the LCA society was that the response to a change in demand for a given crop is not presented by a single crop supplier or a single country, but rather by responses from a variety of suppliers of several different crops in several countries. Discussion  The intensification potential of current and future crop and biomass production was widely discussed. It was generally agreed that some parts of the third world hold large potentials for intensification, which are not realised due to a number of barriers resulting in so-called yield gaps. Conclusions  Modelling the global land use implications of biofuels requires an interdisciplinary approach optimally integrating economic, geographical, biophysical, social and possibly other aspects in the modelling. This interdisciplinary approach is necessary but also difficult due to different perspectives and mindsets in the different disciplines. Recommendations and Perspectives  The concept of a location dependent marginal land use composite should be introduced in LCA of biofuels and it should be acknowledged that the typical LCA assumption of linear substitution is not necessarily valid. Moreover, fertiliser restrictions/accessibility should be included in land use modelling and the relation between crop demand and intensification should be further explored. In addition, environmental impacts of land use intensification should be included in LCA, the powerful concept of land use curves should be further improved, and so should the modelling of diminishing returns in crop production.  相似文献   

7.
Uses of models of land use change are primary tools for analyzing the causes and consequences of land use changes, assessing the impacts of land use change on ecosystems and supporting land use planning and policy. However, no single model is able to capture all of key processes essential to explore land use change at different scales and make a full assessment of driving factors and impacts. Based on the multi-scale characteristics of land use change, combination and integration of currently existed models of land use change could be a feasible solution. Taken Sangong watershed as a case study, this paper describes an integrated methodology in which the conversion of land use and its effect model (CLUE), a spatially explicit land use change model, has been combined with a system dynamic model (SD) to analyze land use dynamics at different scales. A SD model is used to calculate area changes in demand for land types as a whole while a CLUE model is used to transfer these demands to land use patterns. Without the spatial consideration, the SD model ensures an appropriate treatment of macro-economic, demographic and technology developments, and changes in economic policies influencing the demand and supply for land use in a specific region. With CLUE model the land use change has been simulated at a high spatial resolution with the spatial consideration of land use suitability, spatial policies and restrictions to satisfy the balance between land use demand and supply. The application of the combination of SD and CLUE model in Sangong watershed suggests that this methodology have the ability to reflect the complex behaviors of land use system at different scales to some extent and be a useful tool for analysis of complex land use driving factors such as land use policies and assessment of its impacts on land use change. The established SD model was fitted or calibrated with the 1987–1998 data and validated with the 1998–2004 data; combining SD model with CLUE-S model, future land use scenarios were analyzed during 2004–2030. This work could be used for better understanding of the possible impacts of land use change on terrestrial ecosystem and provide scientific support for land use planning and managements of the watershed.  相似文献   

8.
It is expected that Brazil could play an important role in biojet fuel (BJF) production in the future due to the long experience in biofuel production and the good agro‐ecological conditions. However, it is difficult to quantify the techno‐economic potential of BJF because of the high spatiotemporal variability of available land, biomass yield, and infrastructure as well as the technological developments in BJF production pathways. The objective of this research is to assess the recent and future techno‐economic potential of BJF production in Brazil and to identify location‐specific optimal combinations of biomass crops and technological conversion pathways. In total, 13 production routes (supply chains) are assessed through the combination of various biomass crops and BJF technologies. We consider temporal land use data to identify potential land availability for biomass production. With the spatial distribution of the land availability and potential yield of biomass crops, biomass production potential and costs are calculated. The BJF production cost is calculated by taking into account the development in the technological pathways and in plant scales. We estimate the techno‐economic potential by determining the minimum BJF total costs and comparing this with the range of fossil jet fuel prices. The techno‐economic potential of BJF production ranges from 0 to 6.4 EJ in 2015 and between 1.2 and 7.8 EJ in 2030, depending on the reference fossil jet fuel price, which varies from 19 to 65 US$/GJ across the airports. The techno‐economic potential consists of a diverse set of production routes. The Northeast and Southeast region of Brazil present the highest potentials with several viable production routes, whereas the remaining regions only have a few promising production routes. The maximum techno‐economic potential of BJF in Brazil could meet almost half of the projected global jet fuel demand toward 2030.  相似文献   

9.
Opencast coal mining has several environmental impacts, which require land rehabilitation when mining operations are finished. For that reason, restoration after such extractive industries’ work is common and has been well studied. However, many ecological restoration schemes do not examine to what extent complete and functioning ecosystems have been restored above and below ground. While the aim should be to restore functioning ecosystems, most restoration plans focus only on vegetation and above ground macro-fauna.Among the potential species that are likely to be important early in mine land restoration, earthworms are particularly good candidates. They provide several ecosystem services that are likely to accelerate soil restoration, improve primary production and facilitate the restoration of a functional ecosystem in mining areas. These services include the following: increase in topsoil fertility, food for a wide range of predators and recycling of waste organic materials on rehabilitated areas.Here, we outline some of the challenges specifically facing opencast mining restoration and describe how the ecosystem services provided by earthworms may address some of these challenges.  相似文献   

10.
我国大型煤炭基地建设的生态恢复技术研究综述   总被引:11,自引:0,他引:11  
吴钢  魏东  周政达  唐明方  付晓 《生态学报》2014,34(11):2812-2820
煤炭能源是我国的主体能源,在我国经济社会发展中具有重要的战略地位。煤炭工业是关系我国经济发展和能源供应安全的重要基础产业。由于受传统发展观的影响,煤炭工业一直存在生产粗放、安全事故频发、资源浪费严重、环境治理和管理滞后等问题。我国大型煤炭基地的建设对提高煤炭供应保障能力起到了关键支撑作用。因此,从区域可持续发展的角度出发,加强矿区的生态恢复,深化煤炭资源的开发利用和环境保护,对促进国家和区域生态环境与社会经济的可持续发展,构建和谐矿区,确保区域乃至全国的生态安全特别是能源安全具有重要的意义。介绍了国家大型煤炭基地的发展历程、分布和开发现状,以及煤炭开采利用带来的一系列生态环境问题,重点阐述了当前我国煤炭基地建设的关键生态恢复技术体系,并从生态恢复与环境管理的角度提出我国大型煤炭基地的可持续发展建议。  相似文献   

11.
The resolution offered by genomic data sets coupled with recently developed spatially informed analyses are allowing researchers to quantify population structure at increasingly fine temporal and spatial scales. However, both empirical research and conservation measures have been limited by questions regarding the impacts of data set size, data quality thresholds and the timescale at which barriers to gene flow become detectable. Here, we used restriction site associated DNA sequencing to generate a 2,140 single nucleotide polymorphism (SNP) data set for the copperhead snake (Agkistrodon contortrix) and address the population genomic impacts of recent and widespread landscape modification across an ~1,000‐km2 region of eastern Kentucky, USA. Nonspatial population‐based assignment and clustering methods supported little to no population structure. However, using individual‐based spatial autocorrelation approaches we found evidence for genetic structuring which closely follows the path of a historically important highway which experienced high traffic volumes from c. 1920 to 1970 before losing most traffic to a newly constructed alternative route. We found no similar spatial genomic signatures associated with more recently constructed highways or surface mining activity, although a time lag effect may be responsible for the lack of any emergent spatial genetic patterns. Subsampling of our SNP data set suggested that similar results could be obtained with as few as 250 SNPs, and a range of thresholds for missing data exhibited limited impacts on the spatial patterns we detected. While we were not able to estimate relative effects of land uses or precise time lags, our findings highlight the importance of temporal factors in landscape genetics approaches, and suggest the potential advantages of genomic data sets and fine‐scale, spatially informed approaches for quantifying subtle genetic patterns in temporally complex landscapes.  相似文献   

12.
Replacement of fossil fuels with sustainably produced biomass crops for energy purposes has the potential to make progress in addressing climate change concerns, nonrenewable resource use, and energy security. The perennial grass Miscanthus is a dedicated energy crop candidate being field tested in Ontario, Canada, and elsewhere. Miscanthus could potentially be grown in areas of the province that differ substantially in terms of agricultural land class, environmental factors and current land use. These differences could significantly affect Miscanthus yields, input requirements, production practices, and the types of crops being displaced by Miscanthus establishment. This study assesses implications on life cycle greenhouse gas (GHG) emissions of these differences through evaluating five Miscanthus production scenarios within the Ontario context. Emissions associated with electricity generation with Miscanthus pellets in a hypothetically retrofitted coal generating station are examined. Indirect land use change impacts are not quantified but are discussed. The net life cycle emissions for Miscanthus production varied greatly among scenarios (?90–170 kg CO2eq per oven dry tonne of Miscanthus bales at the farm gate). In some cases, the carbon stock dynamics of the agricultural system offset the combined emissions of all other life cycle stages (i.e., production, harvest, transport, and processing of biomass). Yield and soil C of the displaced agricultural systems are key parameters affecting emissions. The systems with the highest potential to provide reductions in GHG emissions are those with high yields, or systems established on land with low soil carbon. All scenarios have substantially lower life cycle emissions (?20–190 g CO2eq kWh?1) compared with coal‐generated electricity (1130 g CO2eq kWh?1). Policy development should consider the implication of land class, environmental factors, and current land use on Miscanthus production.  相似文献   

13.
Open cut mining heavily affects landscapes and is largely irreversible. Post-mining landscapes often differ dramatically from pre-mining ones. One of the largest open cut lignite mining areas in Europe is in Eastern Germany, south of Leipzig. This paper uses an ecosystem services approach to assess the impacts of mining activity over a 100-year period, spanning pre- and post-mining states. We recorded historical land use data from maps and outlined three future potential land use scenarios based on current planning documents. Our results indicate that maps showing the potentials to provide ecosystem services support the prioritization of preference areas in regional planning. For example, forested and heterogeneous habitats are predicted to enhance future urban development and mitigation of future climate change – a goal of the Saxon government. In contrast, if future development priorities are on local food production and bio-energy use, more arable and grassland areas should be pursued. The use of freely and publicly available data and the simple methods of the approach presented here can be used to inform and improve regional landscape planning.  相似文献   

14.
Background, Aim and Scope Land use by agriculture, forestry, mining, house-building or industry leads to substantial impacts, particularly on biodiversity and on soil quality as a supplier of life support functions. Unfortunately there is no widely accepted assessment method so far for land use impacts. This paper presents an attempt, within the UNEP-SETAC Life Cycle Initiative, to provide a framework for the Life Cycle Impact Assessment (LCIA) of land use. Materials and Methods: This framework builds from previous documents, particularly the SETAC book on LCIA (Lindeijer et al. 2002), developing essential issues such as the reference for occupation impacts; the impact pathways to be included in the analysis; the units of measure in the impact mechanism (land use interventions to impacts); the ways to deal with impacts in the future; and bio-geographical differentiation. Results: The paper describes the selected impact pathways, linking the land use elementary flows (occupation; transformation) and parameters (intensity) registered in the inventory (LCI) to the midpoint impact indicators and to the relevant damage categories (natural environment and natural resources). An impact occurs when the land properties are modified (transformation) and also when the current man-made properties are maintained (occupation). Discussion: The size of impact is the difference between the effect on land quality from the studied case of land use and a suitable reference land use on the same area (dynamic reference situation). The impact depends not only on the type of land use (including coverage and intensity) but is also heavily influenced by the bio-geographical conditions of the area. The time lag between the land use intervention and the impact may be large; thus land use impacts should be calculated over a reasonable time period after the actual land use finishes, at least until a new steady state in land quality is reached. Conclusions: Guidance is provided on the definition of the dynamic reference situation and on methods and time frame to assess the impacts occurring after the actual land use. Including the occupation impacts acknowledges that humans are not the sole users of land. Recommendations and Perspectives: The main damages affected by land use that should be considered by any method to assess land use impacts in LCIA are: biodiversity (existence value); biotic production potential (including soil fertility and use value of biodiversity); ecological soil quality (including life support functions of soil other than biotic production potential). Bio-geographical differentiation is required for land use impacts, because the same intervention may have different consequences depending on the sensitivity and inherent land quality of the environment where it occurs. For the moment, an indication of how such task could be done and likely bio-geographical parameters to be considered are suggested. The recommendation of indicators for the suggested impact categories is a matter of future research.  相似文献   

15.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   

16.
Locally produced bioenergy can decrease the dependency on imported fossil fuels in a region, while also being valuable for climate change mitigation. Short‐rotation coppice willow is a potentially high‐yielding energy crop that can be grown to supply a local energy facility. This study assessed the energy performance and climate impacts when establishing willow on current fallow land in a Swedish region with the purpose of supplying a bio‐based combined heat and power plant. Time‐dependent life cycle assessment (LCA) was combined with geographic information system (GIS) mapping to include spatial variation in terms of transport distance, initial soil organic carbon content, soil texture and yield. Two climate metrics were used [global warming potential (GWP) and absolute global temperature change potential (AGTP)], and the energy performance was determined by calculating the energy ratio (energy produced per unit of energy used). The results showed that when current fallow land in a Swedish region was used for willow energy, an average energy ratio of 30 MJ MJ?1 (including heat, power and flue gas condensation) was obtained and on average 84.3 Mg carbon per ha was sequestered in the soil during a 100‐year time frame (compared with the reference land use). The processes contributing most to the energy use during one willow rotation were the production and application of fertilizers (~40%), followed by harvest (~35%) and transport (~20%). The temperature response after 100 years of willow cultivation was ?6·10?16 K MJ?1 heat, which is much lower compared with fossil coal and natural gas (70·10?16 K MJ?1 heat and 35·10?16 K MJ?1 heat, respectively). The combined GIS and time‐dependent LCA approach developed here can be a useful tool in systematic analysis of bioenergy production systems and related land use effects.  相似文献   

17.
Bioenergy production is seen as one way of meeting future energy needs. The growing demand for biomass for energy production induces the cultivation of a few fast growing and high‐yielding energy crops on vast areas of arable land. This land‐use change has been found associated with the reduction of habitat suitability for farmland birds and a decline in farmland biodiversity in general. A large number of studies have assessed the ecological effects of energy crop cultivation at the local scale of a single field. This study focuses on regional landscape changes caused by increased energy crop cultivation, which includes reduction of crop‐type richness and spatial concentration of single crop‐types. We present a spatially explicit ecological model to assess the population‐level consequences of these effects on the abundance of the farmland bird species Skylark (Alauda arvensis). We also investigate the impacts of different land‐use scenarios and aim to identify adaptive conservation options. We show that (1) the impacts of increased energy crop cultivation on Skylark population abundance depend strongly on the landscape structure; (2) impacts could be tolerated as long as a certain minimum level of crop‐type heterogeneity is retained at the landscape level and (3) conservation actions are required and effective especially on landscapes where crop‐field size is large.  相似文献   

18.
煤炭是我国的主要能源,大型露天煤矿的开发推动了地区经济与社会的发展,但同时也引发了区域生态环境问题。因此,探讨矿产开发对区域景观格局的影响,并阐明景观格局动态与生态系统初级生产力的关系,对生态环境的保护具有重要意义。以内蒙古草原区的黑岱沟露天煤矿为例,利用3S(RS、GIS和GPS)技术,在野外实地调查的基础上,分析了1987年以来矿产开发导致的土地利用/覆盖变化、景观格局动态及其与生态系统初级生产力之间的关系,主要结果如下:(1)提出了界定最适研究区范围的方法,认为沿矿区边界向外建立10 km的缓冲区是该研究最适研究区域的大小;(2)草地和耕地是研究区主要的土地利用/覆盖类型,但是在过去20多年间其面积在逐渐减少,而工矿仓储用地及住宅用地面积在急剧增加;(3)矿产开发导致景观格局发生变化,并且在两种不同的空间尺度(研究区和矿区)上表现出总体变化趋势的一致性,但在后期有较大差异;(4)初级生产力变化呈现下降趋势,并且矿区的降低更为突出;(5)以生长季降水量为控制因子的偏相关分析表明,景观配置(平均斑块周长面积比、景观形状指数)与初级生产力呈正相关关系,在研究区尺度上尤其显著,但在矿区尺度上,景观结构组成(斑块密度、均匀度指数和多样性指数)更为重要,与初级生产力呈显著负相关;(6)受复垦规模和演替进程的影响,局限在矿区排土场上的植被重建尚不能改变研究区尺度景观-生态系统初级生产力之间的关系。可见,景观格局的变化以及景观格局与生态系统初级生产力之间的关系均存在尺度依赖性。  相似文献   

19.
Protection of the environment and people from the potential impacts of uranium mining and milling is a global issue as the world's demand for power generation derived from uranium increases. We present a framework for deriving multiple stressor-pathway causal models for an operational uranium mine that can be used to identify research and monitoring needs for environmental protection. Additionally the framework enabled us to categorize the importance of pathways in the system. An interdisciplinary approach to causal model development was undertaken in order to ensure the potential impacts of mining on the natural environment and human health were identified and assessed by researchers with the appropriate knowledge. An example of a causal model and supporting narrative is provided for the most important stressor pathway, transport of inorganic toxicants via the surface water to surface water pathway. This risk-based screening approach can be applied to mining operations where environmental protection (including human health) is underpinned by quantitative interdisciplinary research and monitoring.  相似文献   

20.
中国土地利用空间格局动态变化模拟——以规划情景为例   总被引:5,自引:0,他引:5  
孙晓芳  岳天祥  范泽孟 《生态学报》2012,32(20):6440-6451
土地利用变化研究在环境可持续发展研究领域中具有重要的地位,其空间分布格局的变化影响到生物地球化学循环、气候变化、生物多样性等。采用土地利用动态变化模型Dyna-CLUE模拟了在规划情景下中国土地利用变化未来空间分布格局。将土地利用类型分为六大类,即耕地、草地、林地、建设用地、水域和其它用地。驱动因子包括地形地貌、气候、社会交通等方面,对动态驱动因子如气温、降水、人口交通等,考虑了其在未来情景下的发展趋势。基于土地利用类型与驱动因子之间的定量关系和土地利用类型之间的转换规则等,模拟出至2020年中国土地利用分布格局。结果表明,至2020年,中国东南部、黄淮海平原、四川盆地等地区耕地面积将增加,东北、西北等农牧交错区、农林交错区和沙漠边缘耕地面积将会呈轻度减少趋势;林地面积将增加1417.91万hm2,主要发生在中国东北部以及西南部水热条件好的地区;中国草地在面积上保持稳定,空间上中东部、东南地区草地面积减少,内蒙古中部,青海东部,四川盆地北缘区和青藏高原等地面积增加;建设用地增加531.76万hm2,主要发生在中国的东部地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号