首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Potentiation of the Antiviral Activity of Interferon by Actinomycin D   总被引:6,自引:0,他引:6  
INTERFERON induces cellular synthesis of the antiviral protein which is probably responsible for conferring antiviral activities. Although this antiviral protein has not been isolated, indirect evidence favours a two-step mechanism in the development of cellular resistance to viruses. Taylor1 and subsequently Friedman and Sonnabend2 and Lockart3 have shown that from 0 to 4 h after the treatment of the cells with interferon, the induction of the antiviral state requires the integrity of the cellular apparatus for protein synthesis. Cassingena et al.4 have shown that in somatic mouse-monkey hybrid cells, the genes which code for the production and action of interferon are located at different chromosomal sites.  相似文献   

2.
An estimated 50 million dengue virus (DENV) infections occur annually and more than forty percent of the human population is currently at risk of developing dengue fever (DF) or dengue hemorrhagic fever (DHF). Despite the prevalence and potential severity of DF and DHF, there are no approved vaccines or antiviral therapeutics available. An improved understanding of DENV immune evasion is pivotal for the rational development of anti-DENV therapeutics. Antagonism of type I interferon (IFN-I) signaling is a crucial mechanism of DENV immune evasion. DENV NS5 protein inhibits IFN-I signaling by mediating proteasome-dependent STAT2 degradation. Only proteolytically-processed NS5 can efficiently mediate STAT2 degradation, though both unprocessed and processed NS5 bind STAT2. Here we identify UBR4, a 600-kDa member of the N-recognin family, as an interacting partner of DENV NS5 that preferentially binds to processed NS5. Our results also demonstrate that DENV NS5 bridges STAT2 and UBR4. Furthermore, we show that UBR4 promotes DENV-mediated STAT2 degradation, and most importantly, that UBR4 is necessary for efficient viral replication in IFN-I competent cells. Our data underscore the importance of NS5-mediated STAT2 degradation in DENV replication and identify UBR4 as a host protein that is specifically exploited by DENV to inhibit IFN-I signaling via STAT2 degradation.  相似文献   

3.
4.
Enterovirus 71 (EV71) causes hand-foot-and-mouth disease, which can lead to fatal neurological complications in young children and infants. Few gastrointestinal symptoms are observed clinically, suggesting the presence of a unique immunity to EV71 in the gut. We reported a robust induction of interferons (IFNs) in human intestinal epithelial cells (HT-29), which was suppressed in other types such as RD and HeLa cells. The underlying mechanism for the apparent difference remains obscure. In this study we report that in EV71-infected HT-29 cells, TLR/TRIF signaling was essential to IFN induction; viral replication increased and the induction of IFN-α, -β, -ω, -κ, and -ε decreased markedly in TRIF-silenced HT-29 cells. Importantly, TRIF was degraded by viral 3Cpro in RD cells, but resisted cleavage, and IRF3 was activated and translocated into the nucleus in HT-29 cells. Taken together, our data suggest that IFNs were induced differentially in human HT-29 cells through an intact TLR/TRIF signaling, which differs from other cell types and may be implicated in viral pathogenesis in EV71 infection.  相似文献   

5.
Enterovirus 71 (EV71) is a human pathogen that induces hand, foot, and mouth disease and fatal neurological diseases. Immature or impaired immunity is thought to associate with increased morbidity and mortality. In a murine model, EV71 does not facilitate the production of type I interferon (IFN) that plays a critical role in the first-line defense against viral infection. Administration of a neutralizing antibody to IFN-α/β exacerbates the virus-induced disease. However, the molecular events governing this process remain elusive. Here, we report that EV71 suppresses the induction of antiviral immunity by targeting the cytosolic receptor retinoid acid-inducible gene I (RIG-I). In infected cells, EV71 inhibits the expression of IFN-β, IFN-stimulated gene 54 (ISG54), ISG56, and tumor necrosis factor alpha. Among structural and nonstructural proteins encoded by EV71, the 3C protein is capable of inhibiting IFN-β activation by virus and RIG-I. Nevertheless, EV71 3C exhibits no inhibitory activity on MDA5. Remarkably, when expressed in mammalian cells, EV71 3C associates with RIG-I via the caspase recruitment domain. This precludes the recruitment of an adaptor IPS-1 by RIG-I and subsequent nuclear translocation of interferon regulatory factor 3. An R84Q or V154S substitution in the RNA binding motifs has no effect. An H40D substitution is detrimental, but the protease activity associated with 3C is dispensable. Together, these results suggest that inhibition of RIG-I-mediated type I IFN responses by the 3C protein may contribute to the pathogenesis of EV71 infection.Enterovirus 71 (EV71) is a single-stranded, positive-sense RNA virus belonging to the Picornaviridae family. The viral genome is approximately 7,500 nucleotides in length, with a single open reading frame that encodes a large precursor protein. Upon infection, this protein precursor is processed into four structural (VP1, VP2, VP3, and VP4) and seven nonstructural (2A, 2B, 2C, 3A, 3B, 3C, and 3D) proteins (32). EV71 infection manifests most frequently as the childhood exanthema known as hand, foot, and mouth disease (HFMD). Additionally, EV71 infection may cause neurological diseases, which include aseptic meningitis, brain stem and/or cerebellar encephalitis, and acute flaccid paralysis (32). Young children and infants are especially susceptible to EV71 infection. Since the initial recognition of EV71 in the United States, outbreaks have been reported in Southeast Asia, Europe, and Australia (1-3, 11, 14, 24, 30-32). Recently, large epidemics of HFMD occurred in the mainland of China (26, 42, 52).The mechanism of EV71 pathogenesis remains obscure. It is believed that immature or impaired immunity, upon EV71 infection, is associated with increased morbidity and mortality (7, 14, 17). In a murine infection model, lymphocyte as well as antibody responses reduce tissue viral loads and EV71 lethality (28). Notably, EV71 induces skin rash at the early stage and hind limb paralysis or death at the late stage. Oral infection leads to initial replication in the intestine and subsequent spread to various organs such as the spinal cord and the brain stem (8). Intriguingly, EV71 does not facilitate the production of type I interferon (IFN), a family of cytokines involved in first-line defense against virus infection. Indeed, administration of neutralizing antibody to IFN-α/β increases tissue viral loads and exacerbates the virus-induced disease (29).Type I IFN is produced in response to viral infections (22). For example, Toll-like receptor 3 (TLR3) in the endosome recognizes double-stranded RNA (dsRNA), where it recruits the adaptor Toll/interleukin-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) (22). TRIF, together with tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), then activates the two IKK-related kinases, TANK-binding kinase 1 (TBK1) and inducible IκB kinase (IKKi), both of which phosphorylate interferon regulatory factor 3/7 (IRF3/7) (10, 13, 36, 45). IRF3 or IRF7, in turn, stimulates the expression of target genes, such as IFN-α/β (33, 37, 39, 51). In parallel, TRIF also induces NF-κB activation via TRAF6 (18, 19). In addition, alternative mechanisms exist in host cells to detect cytosolic nucleic acids. Two RNA helicases, retinoid acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), recognize viral RNA present in the cytoplasm and subsequently recruit the adaptor IFN promoter-stimulating factor 1 (IPS-1; also called Cardif, MAVS, and VISA) (22, 23, 54). The interaction of IPS-1, TRAF3, and TBK1/IKKi activates IRF3/IRF7 and induces the expression of IFN-α/β while the interaction of IPS-1 with the Fas-associated protein-containing death domain (FADD) leads to NF-κB activation. It has been shown that MDA5 recognizes long double-stranded RNAs, such as in cells infected with picornaviruses, whereas RIG-I senses 5′ triphosphate single-stranded RNA with poly(U/A) motifs and short dsRNA in cells infected with a variety of RNA viruses (16, 20, 40, 43).The objective of this study was to investigate the interaction of EV71 with the type I IFN system. We demonstrate that, unlike Sendai virus or double-stranded RNA, EV71 does not stimulate the expression of antiviral genes in mammalian cells. Among structural and nonstructural proteins encoded by EV71, the 3C protein is able to inhibit virus-induced activation of the IFN-β promoter. We provide evidence that when expressed in mammalian cells, the 3C protein suppresses RIG-I signaling by disruption of the RIG-I-IPS-1 complex and IRF3 nuclear translocation. While H40, KFRDI, and VGK motifs are involved, the protease and RNA binding activities are dispensable. Collectively, these results suggest that control of RIG-I by the 3C protein impairs type I IFN responses, which may contribute to the pathogenesis of EV71 infection.  相似文献   

6.
The 2A proteinase (2Apro) is an enterovirally encoded cysteine protease that plays essential roles in both the processing of viral precursor polyprotein and the hijacking of host cell translation and other processes in the virus life cycle. Crystallographic studies of 2Apro from enterovirus 71 (EV71) and its interaction with the substrate are reported here. EV71 2Apro was comprised of an N-terminal domain of a four-stranded antiparallel β sheet and a C-terminal domain of a six-stranded antiparallel β barrel with a tightly bound zinc atom. Unlike in other 2Apro structures, there is an open cleft across the surface of the protein in an open conformation. As demonstrated by the crystallographic studies and modeling of the complex structure, the open cleft could be fitted with the substrate. On comparison 2Apro of EV71 to those of the human rhinovirus 2 and coxsackievirus B4, the open conformation could be closed with a hinge motion in the bII2 and cII β strands. This was supported by molecular dynamic simulation. The structural variation among different 2Apro structures indicates a conformational flexibility in the substrate-binding cleft. The open structure provides an accessible framework for the design and development of therapeutics against the viral target.  相似文献   

7.
VPg uridylylation is essential for picornavirus RNA replication. The VPg uridylylation reaction consists of the binding of VPg to 3D polymerase (3Dpol) and the transfer of UMP by 3Dpol to the hydroxyl group of the third amino acid Tyr of VPg. Previous studies suggested that different picornaviruses employ distinct mechanisms during VPg binding and uridylylation. Here, we report a novel site (Site-311, located at the base of the palm domain of EV71 3Dpol) that is essential for EV71 VPg uridylylation as well as viral replication. Ala substitution of amino acids (T313, F314, and I317) at Site-311 reduced the VPg uridylylation activity of 3Dpol by >90%. None of the Site-311 mutations affected the RNA elongation activity of 3Dpol, which indicates that Site-311 does not directly participate in RNA polymerization. However, mutations that abrogated VPg uridylylation significantly reduced the VPg binding ability of 3Dpol, which suggests that Site-311 is a potential VPg binding site on enterovirus 71 (EV71) 3Dpol. Mutation of a polymerase active site in 3Dpol and Site-311 in 3Dpol remarkably enables trans complementation to restore VPg uridylylation. In contrast, two distinct Site-311 mutants do not cause trans complementation in vitro. These results indicate that Site-311 is a VPg binding site that stabilizes the VPg molecule during the VPg uridylylation process and suggest a two-molecule model for 3Dpol during EV71 VPg uridylylation, such that one 3Dpol presents the hydroxyl group of Tyr3 of VPg to the polymerase active site of another 3Dpol, which in turn catalyzes VPg→VPg-pU conversion. For genome-length RNA, the Site-311 mutations that reduced VPg uridylylation were lethal for EV71 replication, which indicates that Site-311 is a potential antiviral target.  相似文献   

8.
9.
10.
11.
12.
Enterovirus 71 (EV71) is the most virulent pathogen among enteroviruses that cause hand, foot and mouth disease in children but rarely in adults. The mechanisms that determine the age-dependent susceptibility remain largely unclear. Here, we found that the paucity of invariant natural killer T (iNKT) cells together with immaturity of the immune system was related to the susceptibility of neonatal mice to EV71 infection. iNKT cells were crucial antiviral effector cells to protect young mice from EV71 infection before their adaptive immune systems were fully mature. EV71 infection led to activation of iNKT cells depending on signaling through TLR3 but not other TLRs. Surprisingly, iNKT cell activation during EV71 infection required TLR3 signaling in macrophages, but not in dendritic cells (DCs). Mechanistically, interleukin (IL)-12 and endogenous CD1d-restricted antigens were both required for full activation of iNKT cells. Furthermore, CD1d-deficiency led to dramatically increased viral loads in central nervous system and more severe disease in EV71-infected mice. Altogether, our results suggest that iNKT cells may be involved in controlling EV71 infection in children when their adaptive immune systems are not fully developed, and also imply that iNKT cells might be an intervention target for treating EV71-infected patients.  相似文献   

13.
Zhang  Qiuhan  Li  Siliang  Lei  Ping  Li  Zixian  Chen  Feifei  Chen  Qi  Wang  Yulu  Gong  Jiami  Tang  Qi  Liu  Xinjin  Lan  Ke  Wu  Shuwen 《中国病毒学》2021,36(6):1387-1399
Virologica Sinica - Similar to that of other enteroviruses, the replication of enterovirus 71 (EV71) occurs on rearranged membranous structures called replication organelles (ROs)....  相似文献   

14.
Wo  Xiaoman  Yuan  Yuan  Xu  Yong  Chen  Yang  Wang  Yao  Zhao  Shuoxuan  Lin  Lexun  Zhong  Xiaoyan  Wang  Yan  Zhong  Zhaohua  Zhao  Wenran 《中国病毒学》2021,36(1):95-103
Enterovirus A71(EV-A71) is one of the etiological pathogens leading to hand, foot, and mouth disease(HFMD), which can cause severe neurological complications. The neuropathogenesis of EV-A71 infection is not well understood. The mislocalization and aggregation of TAR DNA-binding protein 43(TDP-43) is the pathological hallmark of amyotrophic lateral sclerosis(ALS). However, whether TDP-43 was impacted by EV-A71 infection is unknown. This study demonstrated that TDP-43 was cleaved during EV-A71 infection. The cleavage of TDP-43 requires EV-A71 replication rather than the activated caspases due to viral infection. TDP-43 is cleaved by viral protease 3 C between the residues 331 Q and332 S, while mutated TDP-43(Q331 A) was not cleaved. In addition, mutated 3 C which lacks the protease activity failed to induce TDP-43 cleavage. We also found that TDP-43 was translocated from the nucleus to the cytoplasm, and the mislocalization of TDP-43 was induced by viral protease 2 A rather than 3 C. Taken together, we demonstrated that TDP-43 was cleaved by viral protease and translocated to the cytoplasm during EV-A71 infection, implicating the possible involvement of TDP-43 in the pathogenesis of EV-A71 infection.  相似文献   

15.
犬α干扰素(Ca IFNα)在犬病防治过程中应用广泛。旨在开发一种高效的Ca IFNα表达方法。首先按家蚕密码子的偏好性对Gen Bank中的一个Ca IFNα基因进行了优化与合成,将其克隆到杆状病毒转移载体p VL1393中,并与亲本病毒Bm Bacmid共转染家蚕细胞进行细胞内重组。得到的重组病毒用于感染家蚕幼虫,收集发病幼虫的蚕血淋巴用于Ca IFNα检测。采用细胞病变抑制法在MDCK-VSV*GFP系统中测定其抗病毒活性。结果显示家蚕表达的Ca IFNα能有效抑制VSV*GFP在细胞内的复制,其抗病毒活性不低于1.78×106U/m L。  相似文献   

16.
干扰素(interferon,IFN)是宿主先天免疫系统的重要组成部分,它是抵抗病原体的第一道防御。为了利用家蚕杆状病毒表达系统表达鸡κ干扰素,根据已报道的序列对鸡κ干扰素的基因序列进行家蚕密码子优化,并利用共转染技术成功构建了表达用重组杆状病毒。将重组杆状病毒感染家蚕,成功获得了大量鸡κ干扰素的表达产物,并通过Western blot技术对产物进行了检测鉴定。用细胞病变抑制法对干扰素κ抑制VSV-GFP感染鸡成纤维细胞(CEF)的效果进行检测,结果显示鸡干扰素κ的抗病毒效价可以达到(1.04±0.23)×107 IU·mL-1以上。高效价鸡κ干扰素的成功表达为其在抗家禽疫病等方面提供了重要的试验数据。  相似文献   

17.

Background

Enterovirus 71 (EV71) infections may be associated with neurological complications, including brainstem encephalitis (BE). Severe EV71 BE may be complicated with autonomic nervous system (ANS) dysregulation and/or pulmonary edema (PE). ANS dysregulation is related to the overactivation of the sympathetic nervous system, which results from catecholamine release.

Objective

The aims of this study were to explore the effects of catecholamines on severe EV71 infection and to investigate the changes in the percentages of EV71-infected cells, virus titer, and cytokine production on the involvement of catecholamines.

Study Design

Plasma levels of norepinephrine (NE) and epinephrine (EP) in EV71-infected patients were measured using an enzyme-linked immunoassay. The expression of adrenergic receptors (ADRs) on RD, A549, SK-N-SH, THP-1, Jurkat and human peripheral blood mononuclear cells (hPBMCs) were detected using flow cytometry. The percentages of EV71-infected cells, virus titer, and cytokine production were investigated after treatment with NE and EP.

Results

The plasma levels of NE and EP were significantly higher in EV71-infected patients with ANS dysregulation and PE than in controls. Both α1A- and β2-ADRs were expressed on A549, RD, SK-N-SH, HL-60, THP-1, Jurkat cells and hPBMCs. NE treatment elevated the percentages of EV71-infected cells to 62.9% and 22.7% in THP-1 and Jurkat cells, respectively. Via treatment with EP, the percentages of EV71-infected cells were increased to 64.6% and 26.9% in THP-1 and Jurkat cells. The percentage of EV71-infected cells increased upon NE or EP treatment while the α- and β-blockers reduced the percentages of EV71-infected cells with NE or EP treatment. At least two-fold increase in virus titer was observed in EV71-infected A549, SK-N-SH and hPBMCs after treatment with NE or EP. IL-6 production was enhanced in EV71-infected hPBMCs at a concentration of 102 pg/mL NE.

Conclusion

The plasma levels of NE and EP elevated in EV71-infected patients with ANS dysregulation and PE. Both NE and EP enhanced the percentages of infected cells and virus titers in EV71 infection in vitro. NE and EP may play a role in the pathogenesis of EV71 BE complicated with ANS dysregulation and PE.  相似文献   

18.
19.
Type I interferons (IFNs), key antiviral cytokines, evolve to adapt with ever-changing viral threats during vertebrate speciation. Due to novel pathogenic pressure associated with Suidae speciation and domestication, porcine IFNs evolutionarily engender both molecular and functional diversification, which have not been well addressed in pigs, an important livestock species and animal model for biomedical sciences. Annotation of current swine genome assembly Sscrofa10.2 reveals 57 functional genes and 16 pseudogenes of type I IFNs. Subfamilies of multiple IFNA, IFNW and porcine-specific IFND genes are separated into four clusters with ∼60 kb intervals within the IFNB/IFNE bordered region in SSC1, and each cluster contains mingled subtypes of IFNA, IFNW and IFND. Further curation of the 57 functional IFN genes indicates that they include 18 potential artifactual duplicates. We performed phylogenetic construction as well as analyses of gene duplication/conversion and natural selection and showed that porcine type I IFN genes have been undergoing active diversification through both gene duplication and conversion. Extensive analyses of the non-coding sequences proximal to all IFN coding regions identified several genomic repetitive elements significantly associated with different IFN subtypes. Family-wide studies further revealed their molecular diversity with respect to differential expression and restrictive activity on the resurgence of a porcine endogenous retrovirus. Based on predicted 3-D structures of representative animal IFNs and inferred activity, we categorized the general functional propensity underlying the structure-activity relationship. Evidence indicates gene expansion of porcine type I IFNs. Genomic repetitive elements that associated with IFN subtypes may serve as molecular signatures of respective IFN subtypes and genomic mechanisms to mediate IFN gene evolution and expression. In summary, the porcine type I IFN profile has been phylogenetically defined family-wide and linked to diverse expression and antiviral activity, which is important information for further biological studies across the porcine type I IFN family.  相似文献   

20.
肠道病毒71型(EV71)的非结构蛋白2C(P2C)在病毒复制周期中起着重要的作用,制备P2C的特异性抗体,对研究P2C的生物学功能以及EV71与宿主相互作用的具体机制有非常重要的意义。实验将2C基因克隆到原核表达载体p ET-28a(+)上,在大肠埃希菌BL21(DE3)中表达出重组蛋白r P2C,进一步优化原核表达条件,在温度为30℃,诱导剂IPTG浓度为1 mmol/L时,蛋白表达量最高,且主要以包涵体形式存在。直接将获得的r P2C通过SDS-PAGE分离后免疫新西兰兔,制备EV71病毒P2C的兔多克隆抗体。通过Western blot检测,该抗体在110 000稀释比例下仍能很好地识别原核表达的r P2C。同时该抗体也能很好地检测到EV71感染RD细胞中的P2C。因此,实验制备出的抗P2C抗体特异性强、效价高,为后续P2C功能的研究以及EV71病毒检测提供了良好的材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号