首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Rutin has been shown to possess beneficial health effects, including hepatoprotection. However, to date, it has not been demonstrated to have a hepatoprotective effect against cholestatic liver injury. This is the first report to show a protective effect of rutin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Daily oral administration of rutin was started 1 week before injury and was maintained for 4 weeks. In comparison with the control group, the BDL group showed liver injury as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation, and oxidative stress. These pathophysiological changes were attenuated by rutin supplementation. Rutin alleviated BDL-induced transforming growth factor β1 (TGF-β1), interleukin-1β, connective tissue growth factor, and collagen expression. The antifibrotic effect of rutin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad2/3 activity critical to the fibrogenic potential of TGF-β1. Rutin attenuated BDL-induced oxidative stress, leukocyte accumulation, NF-κB activation, and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of rutin on the redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Rutin also attenuated BDL-induced reduction in NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and AMP-activated protein kinase (AMPK). Taken together, the beneficial effects of rutin were shown to be associated with antioxidative and anti-inflammatory effects as well as the downregulation of NF-κB and TGF-β/Smad signaling, probably via interference of ERK activation and/or enhancement of Nrf2, HO-1, and AMPK activity.  相似文献   

2.
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid that has been shown to possess health beneficial effects, including hepatoprotection. However, the molecular mechanism of DHA-mediated hepatoprotection is not fully understood. In the present study, we report the protective effect of DHA on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of DHA was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by chronic DHA supplementation. DHA alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), intereukin-1beta, connective tissue growth factor and collagen expression. The anti-fibrotic effect of DHA was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. DHA also attenuated BDL-induced leukocyte accumulation and nuclear factor-κB (NF-κB) activation. Further studies demonstrated an inhibitory effect of DHA on redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Taken together, the hepatoprotective, anti-inflammatory and anti-fibrotic effects of DHA seem to be multifactorial. The beneficial effects of chronic DHA supplementation are associated with anti-oxidative and anti-inflammatory potential as well as down-regulation of NF-κB and transforming growth factor beta/Smad signaling probably via interference with ERK activation.  相似文献   

3.
AimsOxidative stress is involved in cholestasis-induced hepatic damage. Therefore, antioxidant therapy is a recommended therapeutic strategy. Studies have illustrated that chromium can enhance antioxidative capacity leading to a resolution of oxidative stress. The aim of this study was to assess whether chromium has protective effects against cholestasis-related liver damage.Main methodsCholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Rats were randomly divided into four groups. Control and BDL groups were subjected to sham and BDL operation, respectively, and were supplemented with placebo for 3 weeks. The BDL-post Cr group was supplemented with chromium chloride for 3 weeks after BDL operation. The BDL-pre Cr group was supplemented with chromium chloride for 6 weeks starting from 3 weeks before BDL operation.Key findingsIn comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, and fibrosis. These pathophysiological changes were attenuated in the BDL-Pre Cr and BDL-Post Cr groups. However, there was no significant difference between these two groups. The anti-fibrotic effect of chromium was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of transforming growth factor beta 1 (TGF-β1). In addition, chromium effectively attenuated BDL-induced hepatic oxidative stress.SignificanceThe data indicate that chromium attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of chromium is associated with antioxidative potential.  相似文献   

4.
Liver fibrosis is a necessary stage in the development of chronic liver diseases to liver cirrhosis. This study aims to investigate the anti-fibrotic effects of levo-tetrahydropalmatine (L-THP) on hepatic fibrosis in mice and cell models and its underlying mechanisms. Two mouse hepatic fibrosis models were generated in male C57 mice by intraperitoneal injection of carbon tetrachloride (CCl4) for 2 months and bile duct ligation (BDL) for 14 days. Levo-tetrahydropalmatine was administered orally at doses of 20 and 40 mg/kg. An activated LX2 cell model induced by TGF-β1 was also generated. The results showed that levo-tetrahydropalmatine alleviated liver fibrosis by inhibiting the formation of extracellular matrix (ECM) and regulating the balance between TIMP1 and MMP2 in the two mice liver fibrosis models and cell model. Levo-tetrahydropalmatine inhibited activation and autophagy of hepatic stellate cells (HSCs) by modulating PPARγ/NF-κB and TGF-β1/Smad pathway in vivo and in vitro. In conclusion, levo-tetrahydropalmatine attenuated liver fibrosis by inhibiting ECM deposition and HSCs autophagy via modulation of PPARγ/NF-κB and TGF-β1/Smad pathway.  相似文献   

5.
Liver fibrosis is a grievous global challenge, where hepatic stellate cells (HSCs) activation is a paramount step. This study analyzed the mechanism of Tβ4 in ameliorating liver fibrosis via the MAPK/NF-κB pathway. The liver fibrosis mouse models were established via bile duct ligation (BDL) and verified by HE and Masson staining. TGF-β1-induced activated LX-2 cells were employed in vitro experiments. Tβ4 expression was determined using RT-qPCR, HSC activation markers were examined using Western blot analysis, and ROS levels were tested via DCFH-DA kits. Cell proliferation, cycle, and migration were examined by CCK-8, flow cytometry, and Transwell assays, respectively. Effects of Tβ4 on liver fibrosis, HSC activation, ROS production, and HSC growth were analyzed after transfection of constructed Tβ4-overexpressing lentiviral vectors. MAPK/NF-κB-related protein levels were tested using Western blotting and p65 expression in the nucleus was detected through immunofluorescence. Regulation of MAPK/NF-κB pathway in TGF-β1-induced LX-2 cells was explored by adding MAPK activator U-46619 or inhibitor SB203580. Furthermore, its regulating in liver fibrosis was verified by treating BDL mice overexpressing Tβ4 with MAPK inhibitor or activator. Tβ4 was downregulated in BDL mice. Tβ4 overexpression inhibited liver fibrosis. In TGF-β1-induced fibrotic LX-2 cells, Tβ4 was reduced and cell migration and proliferation were enhanced with elevated ROS levels, while Tβ4 overexpression suppressed cell migration and proliferation. Tβ4 overexpression blocked the MAPK/NF-κB pathway activation by reducing ROS production, thus inhibiting liver fibrosis in TGF-β1 induced LX-2 cells and BDL mice. Tβ4 ameliorates liver fibrosis by impeding the MAPK/NF-κB pathway activation.  相似文献   

6.
Wound healing (WH) impairment is a well-documented phenomenon in clinical and experimental diabetes. Sex hormones, in addition to a number of signaling pathways including transforming growth factor-β1 (TGF-β1)/Smads and TNF-α/NF-κB in macrophages and fibroblasts, appear to play a cardinal role in determining the rate and nature of WH. We hypothesized that a defect in resolution of inflammation and an enhancement in TNF-α/NF-κB activity induced by estrogen deficiency contribute to the impairment of TGF-β signaling and delayed WH in diabetes models. Goto-Kakizaki (GK) rats and full thickness excisional wounds were used as models for type 2 diabetes (T2D) and WH, respectively. Parameters related to the various stages of WH were assessed using histomorphometry, western blotting, real-time PCR, immunofluorescence microscopy and ELISA-based assays. Retarded re-epithelialization, suppressed angiogenesis, delayed wound closure, reduced estrogen level and heightened states of oxidative stress were characteristic features of T2D wounds. These abnormalities were associated with a defect in resolution of inflammation, shifts in macrophage phenotypes, increased β3-integrin expression, impaired wound TGF-β1 signaling (↓p-Smad2/↑Smad7) and enhanced TNF-α/NFκB activity. Human/rat dermal fibroblasts of T2D, compared to corresponding control values, displayed resistance to TGF-β-mediated responses including cell migration, myofibroblast formation and p-Smad2 generation. A pegylated form of soluble TNF receptor-1 (PEG-sTNF-RI) or estrogen replacement therapy significantly improved re-epithelialization and wound contraction, enhanced TGFβ/Smad signaling, and polarized the differentiation of macrophages toward an M2 or "alternatively" activated phenotype, while limiting secondary inflammatory-mediated injury. Our data suggest that reduced estrogen levels and enhanced TNF-α/NF-κB activity delayed WH in T2D by attenuating TGFβ/Smad signaling and impairing the resolution of inflammation; most of these defects were ameliorated with estrogen and/or PEG-sTNF-RI therapy.  相似文献   

7.
The aim of this study was to evaluate the possible protective effects of quercetin (QE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 24 male Wistar albino rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received QE; each group contain 8 animals. The rats in QE treated groups were given QE (15 mg/kg) once a day intraperitoneally for 4 weeks starting 3 days prior to BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells, and neutrophil infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with QE attenuated alterations in liver histology. The alpha smooth muscle actin (α-SMA), transforming growth factor beta (TGF-β1) positive cells and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The data indicate that QE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of QE is associated with antioxidative potential.  相似文献   

8.
BackgroundHepatic fibrosis is considered integral to the progression of chronic liver diseases, as it leads to the development of cirrhosis and hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. The transforming growth factor-β1 (TGF-β1) and Yes-associated protein (YAP) pathways play a pivotal role in HSC activation, hepatic fibrosis and cirrhosis progression. Therefore, targeting the TGF-β/Smad and YAP signaling pathways is a promising strategy for antifibrotic therapy.PurposeThe present study investigated the protective effects of Physalin D (PD), a withanolide isolated from Physalis species (Solanaceae), against liver fibrosis and further elucidated the mechanisms involved in vitro and in vivo.Study design/methodsWe conducted a series of experiments using carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced fibrotic mice and cultured LX-2 cells. Serum markers of liver injury, and the morphology, histology and fibrosis of liver tissue were investigated. Western blot assays and quantitative real-time PCR were used to investigate the mechanisms underlying the antifibrotic effects of PD.ResultPD decreased TGF-β1-induced COL1A1 promoter activity. PD inhibited TGF-β1-induced expression of Collagen I and α-smooth muscle actin (α-SMA) in human hepatic stellate LX-2 cells. PD significantly ameliorated hepatic injury, including transaminase activities, histology, collagen deposition and α-SMA, in CCl4- or BDL-induced mice. Moreover, PD markedly decreased the expression of phosphorylated Smad2/3 in vitro and in vivo. Furthermore, PD significantly decreased YAP protein levels, and YAP knockdown did not further enhance the effects of PD, namely α-SMA inhibition, Collagen I expression and YAP target gene expression in LX-2 cells.ConclusionThese results clearly show that PD ameliorated experimental liver fibrosis by inhibiting the TGF-β/Smad and YAP signaling pathways, indicating that PD has the potential to effectively treat liver fibrosis.  相似文献   

9.
Inflammation is involved in cholestasis-induced hepatic damage. Stearic acid has been shown to possess anti-inflammatory potential. We assessed whether stearic acid has protective effects against cholestasis-related liver damage. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of stearic acid was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, fibrosis, and inflammation. These pathophysiological changes were attenuated by chronic stearic acid supplementation. The anti-fibrotic effect of stearic acid was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and critical fibrogenic cytokine transforming growth factor beta-1 production. Stearic acid also attenuated BDL-induced leukocyte accumulation and NF-κB activation. The data indicate that stearic acid attenuates BDL-induced cholestatic liver injury. The hepatoprotective effect of stearic acid is associated with anti-inflammatory potential.  相似文献   

10.
11.
Renal fibrosis acts as a clinical predictor in patients with chronic kidney disease and is characterized by excessive extracellular matrix (ECM) accumulation. Our previous study suggested that mindin can function as a mediator for liver steatosis pathogenesis. However, the role of mindin in renal fibrosis remains obscure. Here, tumour necrosis factor (TGF)-β-treated HK-2 cells and global mindin knockout mouse were induced with renal ischaemia reperfusion injury (IRI) to test the relationship between mindin and renal fibrosis. In vitro, mindin overexpression promoted p65—the hub subunit of the NF-κB signalling pathway—translocation from the cytoplasm into the nucleus, resulting in NF-κB pathway activation in TGF-β-treated HK-2 cells. Meanwhile, mindin activated the TGF-β/Smad pathway, thereby causing fibrotic-related protein expression in vitro. Mindin−/− mice exhibited less kidney lesions than controls, with small renal tubular expansion, inflammatory cell infiltration, as well as collagen accumulation, following renal IRI. Mechanistically, mindin−/− mice suppressed p65 translocation and deactivated NF-κB pathway. Simultaneously, mindin disruption inhibited the TGF-β/Smad pathway, alleviating the expression of ECM-related proteins. Hence, mindin may be a novel target of renal IRI in the treatment of renal fibrogenesis.  相似文献   

12.
MDA-MB-231 breast cancer cells have a high invasive potential, yet the mechanisms involved are not known. This study showed that Toll-like receptor 2 (TLR2) was highly expressed in MDA-MB-231 cells and played a critical role in cell invasion. Compared with the poorly invasive MCF-7 cells, MDA-MB-231 cells expressed 10.5-fold more TLR2. Using TLR2 agonist pg-LPS and TLR2 neutralizing antibody, we found that TLR2 activation significantly promoted MDA-MB-231 invasion, whereas TLR2 blockade diminished this capacity. TLR2 activation enhanced the activity of NF-κB and induced phosphorylation of TAK1 and IκBα in the TLR2/NF-κB signaling pathway in MDA-MB-231, but not in MCF-7 cells. TLR2 activation increased IL-6, TGF-β, VEGF and MMP9 secretion, which are associated with TLR2-NF-κB signaling. We demonstrated that TLR2 is a critical receptor responsible for NF-κB signaling activity and highly invasive capacity of MDA-MB-231 cells.  相似文献   

13.
Transforming growth factor-β1 (TGF-β1) performs diverse cellular functions, including anti-inflammatory activity. The inhibitory Smad (I-Smad) Smad6 was previously shown to play an important role in TGF-β1-induced negative regulation of Interleukin-1/Toll-like receptor (IL-1R/TLR) signaling through binding to Pellino-1, an adaptor protein of interleukin-1 receptor associated kinase 1(IRAK1). However, it is unknown whether Smad7, the other inhibitory Smad, also has a role in regulating IL-1R/TLR signaling. Here, we demonstrate that endogeneous Smad7 and Smad6 simultaneously bind to discrete regions of Pellino-1 upon TGF-β1 treatment, via distinct regions of the Smad MH2 domains. In addition, the Smad7-Pellino-1 interaction abrogated NF-κB activity by blocking formation of the IRAK1-mediated IL-1R/TLR signaling complex, subsequently causing reduced expression of pro-inflammatory genes. Double knock-down of endogenous Smad6 and Smad7 genes by RNA interference further reduced the anti-inflammatory activity of TGF-β1 than when compared with single knock-down of Smad7. These results provide evidence that the I-Smads, Smad6 and Smad7, act as critical mediators for effective TGF-β1-mediated suppression of IL-1R/TLR signaling, by simultaneous binding to discrete regions of Pellino-1.  相似文献   

14.
Dexmedetomidine (DEX) prevents kidney damage caused by sepsis, but the mechanism of this effect remains unclear. In this study, the protective molecular mechanism of DEX in lipopolysaccharide (LPS)-induced acute kidney injury was investigated and its potential pharmacological targets from the perspective of inhibiting oxidative stress damage and the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation. Intraperitoneal injection of DEX (30 μg/kg) significantly improved LPS (10 mg/kg) induced renal pathological damage and renal dysfunction. DEX also ameliorated oxidative stress damage by reducing the contents of reactive oxygen species, malondialdehyde and hydrogen peroxide, and increasing the level of glutathione, as well as the activity of superoxide dismutase and catalase. In addition, DEX prevented nuclear factor-kappa B (NF-κB) activation and I-kappa B (IκB) phosphorylation, as well as the expressions of NLRP3 inflammasome-associated protein and downstream IL-18 and IL-1β. The messengerRNA (mRNA) and protein expressions of toll-like receptor 4 (TLR4), NADPH oxidase-4 (NOX4), NF-κB, and NLRP3 were also significantly reduced by DEX. Their expressions were further evaluated by immunohistochemistry, yielding results were consistent with the results of mRNA and protein detection. Interestingly, the protective effects of DEX were reversed by atipamezole-an alpha 2 adrenal receptor (α2AR) inhibitor, whereas idazoxan-an imidazoline receptor (IR) inhibitor failed to reverse this change. In conclusion, DEX attenuated LPS-induced AKI by inhibiting oxidative stress damage and NLRP3 inflammasome activation via regulating the TLR4/NOX4/NF-κB pathway, mainly acting on the α2AR rather than IR.  相似文献   

15.
Transforming growth factor-β (TGF-β) plays a dual role in hepatocytes, mediating both tumor suppressor and promoter effects. The suppressor effects of the cytokine can be negatively regulated by activation of survival signals, mostly dependent on tyrosine kinase activity. The aim of our work was to study the role of the protein-tyrosine phosphatase 1B (PTP1B) on the cellular responses to TGF-β, using for this purpose immortalized neonatal hepatocytes isolated from both PTP1B(+/+) and PTP1B(-/-) mice. We have found that PTP1B deficiency conferred resistance to TGF-β suppressor effects, such as apoptosis and growth inhibition, correlating with lower Smad2/Smad3 activation. Both responses were recovered in the presence of the general tyrosine kinase inhibitor genistein. PTP1B(-/-) cells showed elevated NF-κB activation in response to TGF-β. Knockdown of the NF-κB p65 subunit increased cell response in terms of Smads phosphorylation and apoptosis. Interestingly, these effects were accompanied by inhibition of Smad7 up-regulation. In addition, lack of PTP1B promoted an altered NADPH oxidase (NOX) expression pattern in response to TGF-β, strongly increasing the NOX1/NOX4 ratio, which was reverted by genistein and p65 knockdown. Importantly, NOX1 knockdown inhibited nuclear translocation of p65, promoted Smad phosphorylation, and decreased Smad7 levels. In summary, our results suggest that PTP1B deficiency confers resistance to TGF-β through Smad inhibition, an effect that is mediated by NOX1-dependent NF-κB activation, which in turn, increases the level of the Smad inhibitor Smad7 and participates in a positive feedback loop on NOX1 up-regulation.  相似文献   

16.
Accumulating evidence suggests that plasminogen activator inhibitor (PAI)-1 plays an important role in the development of hepatic fibrosis via its involvement in extracellular matrix remodeling. We previously reported that alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, prevents hepatic steatosis by inhibiting the expression of sterol regulatory element binding protein-1c. The aim of the present study was to determine whether ALA prevents hepatic PAI-1 expression and fibrosis through the inhibition of multiple TGF-β-mediated molecular mediators. We investigated whether ALA inhibited the development of hepatic fibrosis in mice following bile duct ligation (BDL), an established animal model of liver fibrosis. We found that ALA markedly inhibited BDL-induced hepatic fibrosis and PAI-1 expression. We also found that ALA attenuated TGF-β-stimulated PAI-1 mRNA expression, and inhibited PAI-1 promoter activity in liver cells; this effect was mediated by Smads and the JNK and ERK pathways. The results of the present study indicate that ALA inhibits hepatic PAI-1 expression through inhibition of TGF-β-mediated molecular mediators, including Smad3, AP1, and Sp1, and prevents the development of BDL-induced hepatic fibrosis. These findings suggest that ALA may have a clinical application in preventing the development and progression of hepatic fibrosis.  相似文献   

17.
Nuclear-Factor-κB (NF-κΒ can counteract transforming growth factor-β1 (TGF-β1)-induced apoptosis in malignant hepatocytes through up-regulation of its downstream genes, such as X-linked inhibitor of apoptosis protein (XIAP). Reports have demonstrated that TGF-β1 can induce oxidative stress, and c-Jun N-terminal Kinase1 (JNK1) is indispensable for TGF-β1-induced apoptosis pathway, but the relationship between radical oxygen species (ROS) and the activation of JNKs is still unclear. In the present study, we found that ROS can induce JNK activation in TGF-β1 mediated apoptosis in hepatocytes. The inhibitors of hydrogen peroxide and superoxide, which were produced by mitochondria under stress, could inhibit the phosphorylation of c-Jun in XIAP knockdown cells. In conclusion, it is the first time to show that both NF-κB and antioxidants can counteract TGF-β1-induced apoptosis in hepatic cell death through JNK1 pathway.  相似文献   

18.
Cytokines released by inflammatory cells around the pancreatic islets are implicated in the pathogenesis of diabetes mellitus. Specifically, interleukin-1β (IL-1β) is known to be involved in islet β-cell damage by activation of nuclear factor-κB (NF-κB)-mediated inducible nitric oxide synthase (iNOS) gene expression. Though most flavonoids are shown to have various beneficial effects, little is known about the anti-inflammatory effects of their metabolites. Therefore, we investigated the effects of quercetin and its metabolites quercetin 3'-sulfate, quercetin 3-glucuronide and isorhamnetin 3-glucuronide on IL-1β-stimulated iNOS gene expression in RINm5F β-cells. The nitrite level, iNOS protein and its mRNA expression levels and iNOS promoter activity were measured. In addition, IκBα protein phosphorylation, nuclear translocation of nuclear factor-κB (NF-κB) and NF-κB DNA binding activity were determined. Adenosine 5'-triphosphate disodium salt-induced insulin release was also measured. Quercetin significantly reduced IL-1β-induced nitrite production, iNOS protein and its mRNA expression levels, and it also inhibited IL-1β-induced IκBα phosphorylation, NF-κB activation and iNOS promoter activity. Additionally, quercetin significantly restored the inhibition of insulin secretion by IL-1β. Meanwhile, quercetin metabolites did not show any effect on IL-1β-induced iNOS gene expression and also on insulin secretion. Therefore, in terms of iNOS expression mechanism, dietary ingestion of quercetin is unlikely to show anti-inflammatory effects in rat islet β-cells exposed to IL-1β.  相似文献   

19.
The anti-inflammatory effects of theophylline have been reported to include inhibition of the release of proinflammatory mediators from macrophages and neutrophils. Overproduction of reactive nitrogen species (RNS) has been reported in the airways of patients with chronic obstructive pulmonary disease (COPD), and this causes tissue inflammation and injury. We investigated whether peroxynitrite stimulated the release of matrix metalloproteinases 2 and 9 (MMP-2 and -9; gelatinases) from human fetal lung fibroblasts (HFL-1 cell line) and whether theophylline inhibited the peroxynitrite-augmented release of MMPs. HFL-1 cells and primary lung fibroblasts were treated with peroxynitrite (an RNS), and gelatinases levels were evaluated by gelatin zymography. The inhibitory effect of theophylline on the peroxynitrite-augmented release of MMP-2 and MMP-9 was also investigated. To explore the cell signaling pathways involved in the peroxynitrite-induced gelatinases release and the inhibitory effect of theophylline, transforming growth factor-β(1) (TGF-β(1)), nuclear factor-κB (NF-κB), and histone deacetylase (HDAC) were measured. Peroxynitrite significantly augmented the release of MMP-2 and MMP-9 by fibroblasts (P < 0.01), as well as TGF-β(1) release (P < 0.01), NF-κB activation (P < 0.01), and HDAC2 inactivation (P < 0.01). An NF-κB inhibitor diminished the RNS-augmented release of MMPs and TGF-β(1) (P < 0.01), and a neutralizing TGF-β antibody also diminished MMP release (P < 0.01). Theophylline significantly inhibited the peroxynitrite-augmented release of MMP-2 and MMP-9 in HFL-1 cells and normal adult lung fibroblasts, and it also inhibited the peroxynitrite-mediated HDAC2 inactivation, NF-κB activation, and TGF-β(1) release in HFL-1 cells (all P < 0.01). These results suggest that peroxynitrite can influence tissue remodeling by promoting gelatinases release, while theophylline suppresses peroxynitrite-induced tissue remodeling via pathways involving NF-κB/TGF-β(1) and/or HDAC in the HFL-1 cell line.  相似文献   

20.
Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号