首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of terrestrial soil nutrient supply in determining the composition and productivity of epiphyte communities has been little investigated. In a montane Hawaiian rainforest, we documented dramatic increases in the abundance and species richness of canopy epiphytes in a forest that had been fertilized annually with phosphorus (P) for 15 years; there was no response in forest that had been fertilized with nitrogen (N) or other nutrients. The response of N-fixing lichens to P fertilization was particularly strong, although mosses and non-N-fixing lichens also increased in abundance and diversity. We show that enhancement of canopy P availability is the most likely factor driving the bloom in epiphytes. These results provide strong evidence that terrestrial soil fertility may structure epiphyte communities, and in particular that the abundance of N-fixing lichens – a functionally important epiphyte group – may be particularly sensitive to ecosystem P availability.  相似文献   

2.
Aim Non‐vascular epiphytes have been largely ignored in studies examining the biotic and abiotic determinants of spatial variation in epiphyte diversity. Our aim was to test whether the spatial patterning of species richness, biomass and community composition across geographic regions, among trees within regions, and among branches within trees is consistent between the vascular and non‐vascular components of the temperate rain forest flora. Location Coastal lowland podocarp‐broadleaved forests on the west coast of the South Island of New Zealand. Methods We collected single samples (30 × 25 cm) from 96 epiphyte assemblages located on the inner branches of 40 northern rata (Metrosideros robusta) trees. For each sample, branch characteristics such as branch height, branch diameter, branch angle, branch aspect, and minimum and maximum epiphyte mat depth were recorded. The biomass for each individual epiphyte species was determined. Results Northern rata was host to a total of 157 species, comprising 32 vascular and 125 non‐vascular species, with liverworts representing 41% of all species. Within epiphyte mats, the average total organic biomass of 3.5 kg m?2 of branch surface area consisted largely of non‐living biomass and roots. Vascular and non‐vascular epiphytes showed strikingly different spatial patterns in species richness, biomass and composition between sites, among trees within sites, and among branches within trees, which could not be explained by the branch structural characteristics we measured. The two plant groups had no significant association in community composition (r = 0.04, P = 0.08). However, the species richness of vascular plant seedlings was strongly linked to the presence/absence of lichens. Main conclusions Non‐vascular plants contributed substantially to the high species richness and biomass recorded in this study, which was comparable to that of some tropical rain forests. High variability in community composition among epiphyte mats, and very low correlation with any of the environmental factors measured possibly indicate high levels of stochasticity in seed or spore colonization, establishment success or community assembly among branches in these canopy communities. Although we found some evidence that vascular plant seedling establishment was linked to the presence of lichens and the biomass of non‐living components in the epiphyte mats, there was no correlation in the spatial patterning or determinants of species richness between non‐vascular and vascular plants. Consequently, variation in total epiphyte biodiversity could not be predicted from the measurement of vascular plant diversity alone, which highlights the crucial importance of sampling non‐vascular plants when undertaking epiphyte community studies.  相似文献   

3.
To assess the contributions of rustic shade cacao plantations to vascular epiphyte conservation, we compared epiphyte species richness, abundance, composition, and vertical distributions on shade trees and in the understories of six plantations and adjacent natural forests. On three phorophytes and three 10 × 10 m understory plots in each of the agroforestry plantations and natural forests, 54 and 77 species were observed, respectively. Individual-based rarefaction curves revealed that epiphyte species richness was significantly higher on forest phorophytes than on cacao farm shade trees; detailed analyses showed that the differences were confined to the inner and outer crown zones of the phorophytes. No differences in epiphyte species richness were found in understories. Araceae, Piperaceae, and Pteridophyta were less species-rich in plantations than in forests, while there were no differences in Orchidaceae and Bromeliaceae. Regression analysis revealed that epiphyte species richness on trunks varied with canopy cover, while abundance was more closely related to soil pH, canopy cover, and phorophyte height. For crown epiphytes, phorophyte diameter at breast height (dbh) explained much of the variation in species richness and abundance. There were also pronounced downward shifts in the vertical distributions of epiphyte species in agroforests relative to natural forests. The results confirm that epiphyte diversity, composition, and vertical distributions are useful indicators of human disturbance and showed that while the studied plantations serve to preserve portions of epiphyte diversity in the landscape, their presence does not fully compensate for the loss of forests.  相似文献   

4.
Vascular epiphytes contribute to the structural, compositional, and functional complexity of tropical montane cloud forests because of their high biomass, diversity, and ability to intercept and retain water and nutrients from atmospheric sources. However, human-caused climate change and forest-to-pasture conversion are rapidly altering tropical montane cloud forests. Epiphyte communities may be particularly vulnerable to these changes because of their dependence on direct atmospheric inputs and host trees for survival. In Monteverde, Costa Rica, we measured vascular epiphyte biomass, community composition, and richness at two spatial scales: (1) along an elevation gradient spanning premontane forests to montane cloud forests and (2) within trees along branches from inner to outer crown positions. We also compared epiphyte biomass and distribution at these scales between two different land-cover types, comparing trees in closed canopy forest to isolated trees in pastures. An ordination of epiphyte communities at the level of trees grouped forested sites above versus below the cloud base, and separated forest versus pasture trees. Species richness increased with increasing elevation and decreased from inner to outer branch positions. Although richness did not differ between land-cover types, there were significant differences in community composition. The variability in epiphyte community organization between the two spatial scales and between land-cover types underscores the potential complexity of epiphyte responses to climate and land-cover changes.  相似文献   

5.
The impact of human disturbance on colonisation dynamics of vascular epiphytes is poorly known. We studied abundance, diversity and floristic composition of epiphyte seedling establishing on isolated and adjacent forest trees in a tropical montane landscape. All vascular epiphytes were removed from plots on the trunk bases of Piptocoma discolor. Newly established epiphyte seedlings were recorded after 2 years, and their survival after another year. Seedling density, total richness at family and genus level, and the number of families and genera per plot were significantly reduced on isolated trees relative to forest trees. Seedling assemblages on trunks of forest trees were dominated by hygrophytic understorey ferns, those on isolated trees by xerotolerant canopy taxa. Colonisation probability on isolated trees was significantly higher for plots closer to forest but not for plots with greater canopy or bryophyte cover. Seedling mortality on isolated trees was significantly higher for mesophytic than for xerotolerant taxa. Our results show that altered recruitment can explain the long-term impoverishment of post-juvenile epiphyte assemblages on isolated remnant trees. We attribute these changes to a combination of dispersal constraints and the harsher microclimate documented by measurements of temperature and humidity. Although isolated trees in anthropogenic landscapes are considered key structures for the maintenance of forest biodiversity in many aspects, our results show that their value for the conservation of epiphytes can be limited. We suggest that abiotic seedling requirements will increasingly constitute a bottleneck for the persistence of vascular epiphytes in the face of ongoing habitat alteration and atmospheric warming.  相似文献   

6.
We describe a complex vertical stratification of collembolan assemblages from rainforest leaf litter samples and identify distinct assemblages associated with forest floor, lower canopy and upper canopy samples. Leaf litter samples were collected from the forest floor and deposits of leaf litter suspended in epiphytes in the canopy of a subtropical rainforest site at Lamington National Park in southeast Queensland. The patterns of relationship among assemblages of Collembola extracted from these samples were examined using a variety of analyses of a matrix of similarities between samples. The results of ANOSIM analyses showed that forest floor, lower canopy and tipper canopy samples formed discrete groups. These results permit a discussion of these groups as three distinct collembolan assemblages. Analysis of the dissimilarities between these assemblages revealed a gradient of similarity from the forest floor through the lower to the upper canopy. This gradient represents a more complex vertical stratification than has previously been identified in rainforest canopy arthropods. We suggest that limitations on the dispersal of some forest floor species into the canopy may be responsible for this pattern. We also identify a second gradient of similarities among these assemblages. We show that dissimilarity among samples from forest floor is significantly lower than dissimilarity among samples from within the lower canopy, and that the level of dissimilarity between samples from within the upper canopy is significantly higher again. We suggest that dispersal barriers and higher probabilities of extinction in upper canopy collembolan colonies may be responsible for higher heterogeneity of species composition and abundance among samples from the upper canopy. We outline a number of testable hypotheses aimed at determining the importance of these processes in producing the patterns we have observed.  相似文献   

7.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old‐growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old‐growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old‐growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old‐growth forests over time. The recovery of epiphyte species richness was rapid with 55‐year‐old forests containing 65 percent of old‐growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old‐growth forests. Similarity of epiphyte communities to old‐growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old‐growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55‐year‐old forests having 14 percent and 115‐year‐old forests having only 49 percent of the density of old‐growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.  相似文献   

8.
Host traits partly determine the abundance and species richness of epiphytes in tropical forests. It has been proposed that older trees with rough bark and evergreens often house more individuals and more epiphytic species than those with thin, smooth, and peeling bark, which harbor few epiphytes. We hypothesize (i) that epiphytes are more abundant and species-rich in the more shaded forest, which is related to bark roughness, and (ii) that epiphytes are distributed in the middle of the host, where microenvironmental conditions are more favorable to survival. We evaluated abundance, species richness, and vertical distribution of epiphytes in two tropical dry forests, according to the deciduousness and basal area of the trees. Moreover, we selected the most abundant epiphytes to test whether their distribution is related to a specific bark type and examine their vertical distribution in two dry forests. We distinguished a high abundance and species richness of epiphytes in the deciduous forest, although basal area and host species richness were higher in the semi-deciduous forest. In both forests, we found a positive relationship between epiphyte abundance and basal area. Higher abundance of epiphytes was related to the predominance of Tillandsia schiedeana, a drought-adapted species, in both forests. Unexpectedly, epiphytes abundantly colonized Bursera simaruba, a host with peeling bark and a very branched crown, where small individuals of T. schiedeana colonized abundantly toward the top of the crown. Our results show the importance of the tropical dry forest, particularly, B. simaruba, in maintaining epiphyte diversity in terms of T. schiedeana colonization.  相似文献   

9.
The forest canopy is fundamentally important in biodiversity conservation and ecosystem function. Cryptogamic epiphytes are dominant tree bole and canopy elements in temperate and boreal forests, though remain neglected by mainstream forest ecology. This review makes ecological information on cryptogamic epiphytes available to a non-specialist audience, to facilitate their integration in forest biodiversity and ecosystem studies more generally. The review focuses specifically on lichen epiphytes, highlighting their diversity and ecosystem role. A principal task is to explore pattern and process in lichen epiphyte diversity – species composition and richness – therefore demonstrating the utility of lichens as an ecological model system. The review examines key themes in previous research. First, the extensive literature used to resolve species response to, and community turnover along environmental/resource gradients, consistent with the habitat niche. Second, the evidence for dispersal-limitation, which may constrain community composition and richness in isolated habitats. Third, these two processes – the habitat niche and dispersal-limitation – are used to explain stand-scale diversity, in addition to the role of neutral effects (habitat area). Fourth, the review moves from a taxonomic (pattern) to a functional (process) perspective, considering evidence for autogenic succession evidenced by competition and/or facilitation, and non-random trends in life-history traits. This functional approach provides a counter-point to an assumption that lichen epiphyte communities are unsaturated and non-competitive, a situation which would allow the long-term accumulation of species richness with temporal continuity. Finally, the review explores landscape-scale impacts on lichen epiphytes, with recommendations for conservation.  相似文献   

10.
Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.  相似文献   

11.
  1. Forest canopies play a crucial role in structuring communities of vascular epiphytes by providing substrate for colonization, by locally varying microclimate, and by causing epiphyte mortality due to branch or tree fall. However, as field studies in the three‐dimensional habitat of epiphytes are generally challenging, our understanding of how forest structure and dynamics influence the structure and dynamics of epiphyte communities is scarce.
  2. Mechanistic models can improve our understanding of epiphyte community dynamics. We present such a model that couples dispersal, growth, and mortality of individual epiphytes with substrate dynamics, obtained from a three‐dimensional functional–structural forest model, allowing the study of forest–epiphyte interactions. After validating the epiphyte model with independent field data, we performed several theoretical simulation experiments to assess how (a) differences in natural forest dynamics, (b) selective logging, and (c) forest fragmentation could influence the long‐term dynamics of epiphyte communities.
  3. The proportion of arboreal substrate occupied by epiphytes (i.e., saturation level) was tightly linked with forest dynamics and increased with decreasing forest turnover rates. While species richness was, in general, negatively correlated with forest turnover rates, low species numbers in forests with very‐low‐turnover rates were due to competitive exclusion when epiphyte communities became saturated. Logging had a negative impact on epiphyte communities, potentially leading to a near‐complete extirpation of epiphytes when the simulated target diameters fell below a threshold. Fragment size had no effect on epiphyte abundance and saturation level but correlated positively with species numbers.
  4. Synthesis: The presented model is a first step toward studying the dynamic forest–epiphyte interactions in an agent‐based modeling framework. Our study suggests forest dynamics as key factor in controlling epiphyte communities. Thus, both natural and human‐induced changes in forest dynamics, for example, increased mortality rates or the loss of large trees, pose challenges for epiphyte conservation.
  相似文献   

12.
海南岛热带天然针叶林附生维管植物多样性和分布   总被引:2,自引:0,他引:2       下载免费PDF全文
作为热带林中一个重要的特征性组分, 附生维管植物对于维持热带森林的物种多样性及其生态系统功能均具有重要作用。该文首次系统地报道了热带天然针叶林中的附生维管植物多样性和分布特征。以海南岛霸王岭国家级自然保护区保存完好的热带天然针叶林(我国唯一较大面积分布的南亚松(Pinus latteri)天然林)中的附生维管植物为研究对象, 通过样带调查(共设置12个10 m × 50 m的样带, 记录每个样带内胸径(DBH) ≥ 5 cm树木上附生维管植物的物种名称、株数及附生高度), 分析附生维管植物的物种多样性和空间分布特征。结果表明: 1)热带针叶林0.6 hm 2面积内共有附生维管植物769株, 分属于7科17属27种, 附生兰科植物和萝摩科植物为优势类群; 2)附生维管植物在水平方向上呈现出聚集分布; 3)附生维管植物在垂直方向上, 在中等高度层次(10-20 m)分布最多, 在下层(0-5 m)也有较多的分布; 4)少数附生维管植物对南亚松表现出一定的选择性, 如华南马尾杉(Phlegmariurus fordii)、玫瑰毛兰(Eria rosea)、眼树莲(Dischidia chinensis)和铁草鞋(Hoya pottsii)等; 5)附生维管植物的物种丰富度及多度与宿主胸径均存在显著的正相关关系。  相似文献   

13.
The diversity and spatial distribution of vascular epiphytes were surveyed in two biotopes (dryland forest and swamp-inundated forest) of the semi-deciduous rain forest area in Cameroon. Eight sites in each biotope were selected, which included 530 individuals of phorophytes in dryland forest and 460 in swamp-inundated forest. A total of 148 epiphyte species were recorded, which showed that semi-deciduous rain forests represent a major source of African-epiphyte diversity. Dryland forest hosted 110 epiphyte species, while the swamp-inundated forest harboured 108. A total of 56 species were found only in the dryland forest and 60 were restricted to the swamp-inundated forest. At family level, Orchidaceae exhibited the highest-species richness within both biotopes. Pteridophytes were more abundant in the swamp-inundated forest. A TWINSPAN analysis of the floristic similarities separated the two investigated forest types very clearly. No significant difference existed between the two biotopes regarding vertical distribution of epiphytes within single trees. The swamp-inundated forests may serve as a refuge for many epiphytes that occur in the outer canopy of the dryland forests, both because they are inherently less vulnerable to timber extraction, and enjoy better protection by legislation.  相似文献   

14.
Aim Although vascular epiphytes are important components of species richness and complexity of Neotropical forests, vascular epiphytes are under‐represented in large scale biogeographical analyses. We studied the diversity, biogeography and floristic relationships of the epiphytic flora of the Yasuní region (Western Amazonia) in a Neotropical context, with special emphasis on the influence of the Andean flora on floristic composition and diversity of surrounding lowland forests. Location Western Amazonian lowland rainforest, Tiputini Biodiversity Station (0°38′ S 76°09′ W, 230 m a.s.l., 650 ha), Yasuní National Park, Ecuador. Methods We compared the vascular epiphyte flora of Yasuní with 16 published Neotropical epiphyte inventories. Secondly, based on a floristic database with records of more than 70,000 specimens of vascular epiphytes from the Neotropics the elevational composition of eight selected inventories was analysed in detail. Results The vascular epiphyte flora of Yasuní is characterized by a very high species richness (313 spp.). A moderate portion of species is endemic to the Upper Napo region (c. 10%). However, this figure is much higher than previous analyses primarily based on woody species suggested. Geographical ranges of these species match with a proposed Pleistocene forest refuge. Compared with Northern and Central Amazonian sites, Western Amazonian epiphyte communities are characterized by a higher portion of montane and submontane species. Species richness of vascular epiphytes at the sites was correlated with the amount of rainfall, which is negatively correlated with the number of dry months. Main conclusion Recent and historic patterns of rainfall are the driving forces behind diversity and floristic composition of vascular epiphytes in Western Amazonia: high annual rainfall in combination with low seasonality provides suitable conditions to harbour high species richness. The proximity to the Andes, the most important centre of speciation for most Neotropical epiphytic taxa, in combination with the climatic setting has allowed a continuous supply of species richness to the region. At least for epiphytes, the borderline between the Andean and Amazonian flora is much hazier than previously thought. Moreover, the comparatively moist climate in Western Amazonia during the Pleistocene has probably led to fewer extinctions and/or more speciation than in more affected surrounding lowlands.  相似文献   

15.
Vascular epiphytes are a conspicuous and highly diverse group in tropical wet forests; yet, we understand little about their mineral nutrition across sites. In this study, we examined the mineral nutrition of three dominant vascular epiphyte groups: ferns, orchids, and bromeliads, and their host trees from samples collected along a 2600 m elevational gradient in the tropical wet forests of Costa Rica. We predicted that the mineral nutrition of ferns, orchids, and bromeliads would differ because of their putative differences in nutrient acquisition mechanisms and nutrient sources—atmospherically dependent, foliar feeding bromeliads would have lower nitrogen (N) and phosphorous (P) concentrations and more depleted δ15N values than those in canopy soil-rooted ferns because canopy soil is higher in available N, and more enriched in δ15N than the atmospheric sources of precipitation and throughfall. We also predicted that epiphyte foliar chemistry would mirror that of host trees because of the likely contribution of host trees to the nutrient cycle of epiphytes via foliar leaching and litter contributions to canopy soil. In the same vein, we predicted that epiphyte and host tree foliar chemistry would vary with elevation reflecting ecosystem-level nutrients—soil N availability increases and P availability decreases with increasing elevation. Our results confirmed that canopy soil-rooted epiphytes had higher N concentrations than atmospheric epiphytes; however, our predictions were not confirmed with respect to P which did not vary among groups indicating fixed P availability within sites. In addition, foliar δ15N values did not match our prediction in that canopy soil-rooted as well as atmospheric epiphytes had variable signatures. Discriminant function analysis (DFA) on foliar measurements determined that ferns, orchids, and bromeliads are statistically distinct in mineral nutrition. We also found that P concentrations of ferns and orchids, but not bromeliads, were significantly correlated with those of host trees indicating a possible link in their mineral nutrition’s via canopy soil. Interestingly, we did not find any patterns of epiphyte foliar chemistry with elevation. These data indicate that the mineral nutrition of the studied epiphyte groups are distinct and highly variable within sites and the diverse uptake mechanisms of these epiphyte groups enhance resource partitioning which may be a mechanism for species richness maintenance in tropical forest canopies.  相似文献   

16.
The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.  相似文献   

17.
Question: Vertical zonation schemes are widely used in biodiversity studies with vascular epiphytes as a tool to capture spatial distribution patterns, the one most commonly used was proposed by Johansson more than 30 years ago. Does a survey of the epiphytes found on larger trees really yield a representative sample of the local community? Location: Lowland rainforest of the San Lorenzo Crane Plot, Republic of Panama. Methods: A complete census of the vascular epiphytes on all trees > 1 cm DBH in 0.4 ha of undisturbed lowland forest was analysed with both cluster and discriminant analysis to detect groupings of epiphyte species. Results: Six different groups of species were detected, five of them preferring different substrates on larger trees (as defined by (1) the height above ground at the attachment site, (2) the diameter of the substrate and (3) the occurrence on stem vs branches/twigs) and resembling to some extent the original Johansson zones. A sixth group of epiphytes, comprising ca. 10% of all taxa, was almost always found on small diameter stems and branches of trees with small DBH at lower and intermediate heights within the forest. Conclusions: Applying pre‐established zonation schemes may lead to misleading results in biodiversity studies with epiphytes. Important aspects of spatial distribution patterns may be missed, and the determination of relative species abundances may carry a strong quantitative and qualitative bias when analyses rely completely on epiphytic plants found on larger trees.  相似文献   

18.
Species interactions can shape the structure of natural communities. Such sets of interactions have been described as complex ecological networks, an example of which is the commensal network formed by epiphyte–phorophyte interactions. Vascular epiphytes germinate and grow on phorophytes (support trees), assuming a horizontal distribution (among the phorophyte species) and a vertical distribution (from the base of the tree trunk to the crown of phorophytes, i.e., through ecological zones). Here, we investigated the organization of these structural dimensions of the epiphyte–phorophyte network in a Brazilian tropical montane cloud forest. The analyzed network, comprising 66 epiphyte species and 22 phorophyte species, exhibited a nested structure with a low degree of specialization, a typical pattern for epiphyte–phorophyte networks in forests. The network was slightly modular, with 65% of the species common to three modules, and had vertical structure corresponding to the vertical organization of the phorophytes. The size (diameter at breast height) of phorophyte individuals influenced the network structure, possibly due to the increase in habitat area, the time available for colonization by epiphytes, and a greater number of microenvironments. We found that the distribution of the epiphyte species differed between the phorophyte ecological zones, with greater richness in the lower portions and greater abundance in the upper portions of the phorophytes. The results provide relevant guidance for future research on the characteristics and the vertical and horizontal organization of vascular epiphyte and phorophyte networks. Abstract in Portuguese is available with online material.  相似文献   

19.
《植物生态学报》2016,40(5):508
Forest canopies are one of the most species-rich habitats, but among the least explored in the biosphere. They play a crucial role in the process of material and energy exchange between the forest and atmosphere. Individual ecosystem members (e.g., epiphytes) and the ecological function of canopies have been given insufficient attention because of inaccessibility. Canopy cranes have been successfully used to guarantee non-destructive and reiterated sampling of epiphytes, thus offering a top-down perspective of the entire canopy. These cranes have become the symbol of canopy research and enable epiphyte research. Globally, western developed countries have conducted many studies of diversity and spatial distributions of epiphytes using canopy cranes, thus accumulating an abundance of valuable results. This review summarizes the structure, development history, and distribution of canopy cranes as well as general information about international canopy research organizations. Ecological studies of epiphytes performed around the world using these canopy cranes are also reviewed. Additionally, the development of canopy ecology and the construction of canopy cranes in China are introduced briefly. In analyzing current research trends in ecological studies of epiphytes in China and globally, the following aspects were considered: biodiversity, spatial patterns and maintenance mechanisms, ecological adaptations of epiphytes, their relationship with canopy animals, and their responses to climate change.  相似文献   

20.
林冠是生物圈中物种最丰富却最鲜为人知的生境之一。它在森林与大气的物质、能量交换过程中发挥着至关重要的作用。但因林冠调查技术的限制, 林冠及生存在其中的附生植物在生态系统中的功能尚未得到足够的重视。塔吊在三维空间中作业具有“全方位、高精度、非破坏、可重复”的特征。林冠塔吊已成为当前林冠学研究的标志, 并为林冠附生植物研究提供了契机。国际上, 欧美国家利用塔吊技术对林冠层附生植物多样性与空间分布等进行了大量的研究, 取得了丰硕的成果。该文介绍了塔吊的构造、林冠塔吊建设历史和站点分布及国际林冠研究组织等概况, 并对依托塔吊开展的附生植物研究进展进行了评述。此外, 还简要介绍了我国塔吊建设与林冠生态学发展情况。在系统分析国内外附生植物研究现状基础上, 从附生植物多样性、附生植物空间格局与维持机制、生态适应性、与林冠动物的关系以及附生植物对气候变化的响应等5个方面对今后基于林冠塔吊开展附生植物研究进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号