首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ingenol mebutate is the active ingredient in Picato® a new drug for the treatment of actinic keratosis. A number of derivatives related to ingenol mebutate were prepared by chemical synthesis from ingenol with the purpose of investigating the SAR and potency in assays relating to pro-inflammatory effects (induction of PMN oxidative burst and keratinocyte cytokine release), the potential of cell death induction, as well as the chemical stability. By modifications of the ingenol scaffold several prerequisites for activity were identified. The chemical stability of the compounds could be linked to an acyl migration mechanism. We were able to find analogues of ingenol mebutate with comparable in vitro properties. Some key features for potent and more stable ingenol derivatives have been identified.  相似文献   

2.
TNFα plays key roles in the regulation of inflammation, cell death, and proliferation and its signaling cascade cross-talks with the insulin signaling cascade. PKCδ, a novel PKC isoform, is known to participate in proximal TNFα signaling events. However, it has remained unclear whether PKCδ plays a role in distal TNFα signaling events. Here we demonstrate that PKCδ is activated by TNFα in a delayed fashion that is temporally associated with JNK activation. To investigate the signaling pathways activating PKCδ and JNK, we used pharmacological and genetic inhibitors of NFκB. We found that inhibition of NFκB attenuated PKCδ and JNK activations. Further analysis revealed that ER stress contributes to TNFα-stimulated PKCδ and JNK activations. To investigate the role of PKCδ in TNFα action, we used 29-mer shRNAs to silence PKCδ expression. A reduction of ~90% in PKCδ protein levels reduced TNFα-stimulated stress kinase activation, including JNK. Further, PKCδ was necessary for thapsigargin-stimulated JNK activation. Because thapsigargin is a potent inducer of ER stress, we determined whether PKCδ was necessary for induction of the UPR. Indeed, a reduction in PKCδ protein levels reduced thapsigargin-stimulated CHOP induction, a hallmark of the UPR, but not BiP/GRP78 induction, suggesting that PKCδ does not globally regulate the UPR. Next, the role of PKCδ in TNFα mediated cross-talk with the insulin signaling pathway was investigated in cells expressing human IRS-1 and a 29-mer shRNA to silence PKCδ expression. We found that a reduction in PKCδ protein levels reversed the TNFα-mediated reduction in insulin-stimulated IRS-1 Tyr phosphorylation, Akt activation, and glycogen synthesis. In addition, TNFα-stimulated IRS protein Ser/Thr phosphorylation and degradation were blocked. Our results indicate that: 1) NFκB and ER stress contribute in part to PKCδ activation; 2) PKCδ plays a key role in the propagation of the TNFα signal; and 3) PKCδ contributes to TNFα-induced inhibition of insulin signaling events.  相似文献   

3.
We investigated whether a specific serotonin (5-HT) receptor-mediated mechanism was involved in dextromethorphan (DM)-induced serotonergic behaviors. We firstly observed that the activation of 5-HT1A receptor, but not 5-HT2A receptor, contributed to DM-induced serotonergic behaviors in mice. We aimed to determine whether the upregulation of 5-HT1A receptor induced by DM facilitates the specific induction of certain PKC isoform, because previous reports suggested that 5-HT1A receptor activates protein kinase C (PKC). A high dose of DM (80 mg/kg, i.p.) induced a selective induction of PKCδ out of PKCα, PKCβI, PKCβII, PKCξ, and PKCδ in the hypothalamus of wild-type (WT) mice. More importantly, 5-HT1A receptor co-immunoprecipitated PKCδ in the presence of DM. Consistently, rottlerin, a pharmacological inhibitor of PKCδ, or PKCδ knockout significantly protected against increases in 5-HT1A receptor gene expression, 5-HT turnover rate, and serotonergic behaviors induced by DM. Treatment with DM resulted in an initial increase in nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation and DNA-binding activity, γ-glutamylcysteine (GCL) mRNA expression, and glutathione (GSH) level. This compensative induction was further potentiated by rottlerin or PKCδ knockout. However, GCL mRNA and GSH/GSSG levels were decreased 6 and 12 h post-DM. These decreases were attenuated by PKCδ inhibition. Our results suggest that interaction between 5-HT1A receptor and PKCδ is critical for inducing DM-induced serotonergic behaviors and that inhibition of PKCδ attenuates the serotonergic behaviors via downregulation of 5-HT1A receptor and upregulation of Nrf2-dependent GSH synthesis.  相似文献   

4.
BIK protein is an initiator of mitochondrial apoptosis, and BIK expression is induced by proapoptotic signals, including DNA damage. Here, we demonstrate that 3' end processing and expression of BIK mRNA are controlled by the nuclear PI4,5P(2)-regulated poly(A) polymerase Star-PAP downstream of DNA damage. Nuclear PKCδ is a key mediator of apoptosis, and DNA damage stimulates PKCδ association with the Star-PAP complex where PKCδ is required for Star-PAP-dependent BIK expression. PKCδ binds the PI4,5P(2)-generating enzyme PIPKIα, which is essential for PKCδ interaction with the Star-PAP complex, and PKCδ activity is directly stimulated by PI4,5P(2). Features in the BIK 3' UTR uniquely define Star-PAP specificity and may block canonical PAP activity toward BIK mRNA. This reveals a nuclear phosphoinositide signaling nexus where PIPKIα, PI4,5P(2), and PKCδ regulate Star-PAP control of BIK expression and induction of apoptosis. This pathway is distinct from the Star-PAP-mediated oxidative stress pathway indicating signal-specific regulation of mRNA 3' end processing.  相似文献   

5.
The mechanisms whereby free fatty acids induce endothelial cell apoptosis are not yet understood. The present study aimed to investigate the role of PKCδ in free fatty acid–induced endothelial cell apoptosis. In addition, we looked for evidence of apoptosis‐related interactions between PKCδ and Fas signal pathway. Human umbilical vein endothelial cells were treated with various concentrations of free fatty acids and transiently transfected with PKCδ siRNA or Fas siRNA to inhibit PKCδ or Fas expression. Cell proliferation was determined through colorimetric assays, and apoptosis was quantified using flow cytometry. Protein expression was determined from cell lysates using Western blots with antibodies against p‐PKCδTyr512, PKCδ, and Fas. Statistical analyses were performed. Free fatty acids had multiple effects on human umbilical vein endothelial cells, including concentration‐dependent inhibition of cell proliferation, induction of apoptosis, increased Fas expression, and increased PKCδ expression and phosphorylation. Inhibition of PKCδ mRNA expression by PKCδ siRNA led to a reduction in both free fatty acid–induced apoptosis and Fas expression. However, Fas siRNA treatment inhibited Fas, but not PKCδ, expression in human umbilical vein endothelial cells. The free fatty acid–induced apoptosis in endothelial cells are possibly mediated by PKCδ and may involve upregulation of its downstream Fas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We investigated the regulation of Hsp27 phosphorylation by protein kinase C δ (PKCδ) during etoposide-induced apoptosis. The phosphorylation of Hsp27 at Ser78 was temporally correlated with the proteolytic activation of PKCδ during apoptosis. Hsp27 phosphorylation was dependent on the activity of PKCδ since treatment with rottlerin, a chemical inhibitor of PKCδ, or overexpression of a PKCδ dominant negative mutant abolished the phosphorylation. In addition, recombinant PKCδ phosphorylated Hsp27 at Ser78 in vitro. Moreover, caspase-3 was specifically activated following Hsp27 phosphorylation at Ser78. Pull-down assays using a phosphomimetic Hsp27 mutant revealed that binding between Hsp27 and cytochrome c was abolished by the phosphorylation. These results suggest that Hsp27 dissociates from cytochrome c following PKCδ-mediated phosphorylation at Ser78, which allows formation of the apoptosome and stimulates apoptotic progression.  相似文献   

7.
Vascular calcification is an active cell-mediated process that reduces elasticity of blood vessels and increases blood pressure. Until now, the molecular basis of vascular calcification has not been fully understood. We previously reported that microtubule disturbances mediate vascular calcification. Here, we found that protein kinase C (PKC) signaling acted as a novel coordinator between cytoskeletal changes and hyperphosphatemia-induced vascular calcification. Phosphorylation and expression of both PKCα and PKCδ decreased during inorganic phosphate (Pi)-induced vascular smooth muscle cell (VSMC) calcification. Knockdown of PKC isoforms by short interfering RNA as well as PKC inactivation by Go6976 or rottlerin treatment revealed that specific inhibition of PKCα and PKCδ accelerated Pi-induced calcification both in VSMCs and ex vivo aorta culture through upregulation of osteogenic signaling. Additionally, inhibition of PKCα and PKCδ induced disassembly of microtubule and actin, respectively. In summary, our results indicate that cytoskeleton perturbation via PKCα and PKCδ inactivation potentiates vascular calcification through osteogenic signal induction.  相似文献   

8.
P-glycoprotein (P-gp) mediates drug resistance. Protein kinase C (PKC) expression correlates with drug resistance in several types of cancer. We determined whether PKC signals the induction of P-gp in LNCaP human prostate cancer cells, and identified a specific isozyme involved, in a model of aspirin-induced P-glycoprotein expression. An inhibitor of PKC activity, and a specific peptide inhibitor of PKC epsilon translocation, suppressed the induction of P-gp. The PKC activator ingenol, but not OAG, induced P-gp expression in a dose-dependent manner. Based on our results, we conclude that PKC epsilon mediates the induction of P-gp. Accordingly, PKC epsilon is activated and translocates from the membrane fraction to the cytoskeleton fraction in aspirin-treated cells. The findings of this study point to PKC epsilon as a signalling molecule for the induction of P-gp in LNCaP prostate cancer cells.  相似文献   

9.
Pulse treatment with cadmium chloride followed by recovery caused apoptosis in U937 human promonocytic cells. In addition, the treatment-induced PKCδ translocation from cytosol to membrane fraction, which was already detected at 30 min of treatment; and also caused PKCδ cleavage to give a 41-kDa fragment, which was detected at 3–6 h of recovery, concomitantly with the execution of apoptosis. All these effects were reduced by the PKCδ-specific inhibitor rottlerin. By contrast, rottlerin did not prevent the cadmium-provoked stimulation of the stress response (as measured by HSP70 expression), nor inhibited the generation of apoptosis by heat-shock, which failed to cause PKCδ translocation. Cadmium chloride rapidly induced p38MAPK activation, which was not affected by rottlerin. By contrast, the p38MAPK inhibitor SB203580 reduced PKCδ translocation and cleavage, indicating that p38MAPK activation precedes and regulates PKCδ activation. It is concluded that PKCδ mediates apoptosis induction by cadmium ions via early membrane translocation, and also possibly through late kinase proteolytic cleavage and phosphorylation on tyrosine residues.  相似文献   

10.
This report describes that protein kinase C delta (PKCδ) overexpression prevents TRAIL‐induced apoptosis in breast tumor cells; however, the regulatory mechanism(s) involved in this phenomenon is(are) incompletely understood. In this study, we have shown that TRAIL‐induced apoptosis was significantly inhibited in PKCδ overexpressing MCF‐7 (MCF7/PKCδ) cells. Our data reveal that PKCδ inhibits caspase‐8 activation, a first step in TRAIL‐induced apoptosis, thus preventing TRAIL‐induced apoptosis. Inhibition of PKCδ using rottlerin or PKCδ siRNA reverses the inhibitory effect of PKCδ on caspase‐8 activation leading to TRAIL‐induced apoptosis. To determine if caspase‐3‐induced PKCδ cleavage reverses its inhibition on caspase‐8, we developed stable cell lines that either expresses wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) or caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδ mut) utilizing MCF‐7 cells expressing caspase‐3. Cells that overexpress caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδmut) significantly inhibited TRAIL‐induced apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. In MCF‐7/cas‐3/PKCδmut cells, TRAIL‐induced caspase‐8 activation was blocked leading to inhibition of apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. Together, these results strongly suggest that overexpression of PKCδ inhibits caspase‐8 activation leading to inhibition of TRAIL‐induced apoptosis and its inhibition by rottlerin, siRNA, or cleavage by caspase‐3 sensitizes cells to TRAIL‐induced apoptosis. Clinically, PKCδ overexpressing tumors can be treated with a combination of PKCδ inhibitor(s) and TRAIL as a new treatment strategy. J. Cell. Biochem. 111: 979–987, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Tumor-associated NADH oxidase (tNOX; ENOX2) is a growth-related protein expressed in transformed cells. Consistent with this function, tNOX knockdown by RNA interference leads to a significant reduction in cell proliferation and migration in HeLa cells, whereas tNOX overexpression confers an aggressive phenotype. Here, for the first time, we report that tNOX is phosphorylated by protein kinase Cδ (PKCδ) both in vitro and in vivo. Replacement of serine-504 with alanine significantly reduces phosphorylation by PKCδ. Co-immunoprecipitation experiments reveal an interaction between tNOX and PKCδ. Moreover, whereas overexpression of wild-type tNOX in NIH3T3 cells increases cell proliferation and migration, overexpression of the S504A tNOX mutant leads to diminished cell proliferation and migration, reflecting reduced stability of the unphosphorylatable tNOX mutant protein. Collectively, these results suggest that phosphorylation of serine-504 by PKCδ modulates the biological function of tNOX.  相似文献   

12.
Protein kinase C (PKC) δ plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKCδ generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKCδ isoform named PKCδIX (Genebank Accession No. HQ840432). PKCδIX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKCδ. PKCδIX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKCδIX provided a possibility that this PKCδ isozyme functions as a novel dominant-negative form for PKCδ due to its lack of the ATP-binding domain that is required for the kinase activity of PKCδ. Indeed, overexpression of PKCδIX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKCδIX protein could competitively inhibit the kinase activity of PKCδ. We conclude that PKCδIX can function as a natural dominant-negative inhibitor of PKCδ in vivo.  相似文献   

13.
Fibroblast growth factor 2 (FGF-2) has been found to play an anti-anabolic and/or a catabolic role in adult human articular cartilage via regulation of multiple signaling pathways. Upon FGF-2 stimulation, a molecular crosstalk between the mitogen activated protein kinase (MAPK) and protein kinase C δ (PKCδ) pathways are initiated, where PKCδ positively regulates downstream MAPK signaling. In this study, we explored the relationship between fibroblast growth factor receptor 1 (FGFR1), Ras, and PKCδ in FGF-2 signaling in human articular chondrocytes. Pathway-specific inhibition using both chemical inhibitors and siRNA targeting FGFR1 demonstrated that, upon FGF-2 stimulation, FGFR1 controlled both Ras and PKCδ activation, which converged on the Raf-MEK1/2-ERK1/2 axis. No crosstalk was observed between Ras and PKCδ. Quantitative PCR analyses revealed that both Ras and PKCδ contributed to FGF-2-mediated upregulation of MMP-13, ADAMTS5, and repression of aggrecan gene. Correspondingly, FGF-2-mediated proteoglycan loss was effectively reversed by individual pathway-specific inhibitor of Ras, PKCδ, and ERK1/2 in both 3-dimensional alginate bead culture and cartilage organ culture systems. Our findings suggest that FGFR1 interacts with FGF-2 and then activates Ras and PKCδ, which concertedly drive MAPK signaling to mediate biological effects of FGF-2. Such an integration of dual inputs constitutes a novel mechanism of FGF-2 signaling cascade in human articular chondrocytes.  相似文献   

14.
Protein kinase C delta (PKCδ) is one of the important isoforms of PKCs that regulate various cellular processes, including cell survival and apoptosis. Studies have shown that activation of PKCδ is correlated with apoptosis in various cell types, depending upon various stimuli. Phosphorylation of Thr505, Ser643 and Ser662 is crucial in activation of PKCδ. Furthermore, phosphorylation of tyrosine residues, in particular that of Tyr311, is associated with PKCδ activation and induction of apoptosis. Here, we generated a hydrophobic motif phosphorylation-deficient mutant of PKCδ (PKCδ-S662A) by mutating Ser662 to Ala, and studied the effect of this mutation in inducing apoptosis in L929 murine fibroblasts. We report that this mutation renders PKCδ apoptotically more active. Furthermore, we found that the mutant PKCδ-S662A is tyrosine-phosphorylated and translocated to the membrane faster than its wild-type counterpart.  相似文献   

15.
Hepatic steatosis can progress to the clinical condition of non-alcoholic steatohepatitis (NASH), which is a precursor of more serious liver diseases. The novel PKC isoforms δ and ε are activated by lipid metabolites and have been implicated in lipid-induced hepatic disease. Using a methionine- and choline-deficient (MCD) dietary model of NASH, we addressed the question of whether hepatic PKCδ and PKCε are activated. With progression from steatosis to steatohepatitis, there was activation and increased PKCδ protein content coincident with hepatic endoplasmic reticulum (ER) stress parameters. To examine whether similar changes could be induced in vitro, McA-RH 7777 (McA) hepatoma cells were used. We observed that McA cells stored triglyceride and released alanine aminotransferase (ALT) when treated with MCD medium in the presence of fatty acids. Further, MCD medium with palmitic acid, but not oleic or linoleic acids, maximally activated PKCδ and stimulated ER stress. In PKCδ knockdown McA cells, MCD/fatty acid medium-induced ALT release and ER stress induction were completely blocked, but triglyceride storage was not. In addition, a reduction in the uptake of propidium iodide and the number of apoptotic nuclei and a significant increase in cell viability and DNA content were observed in PKCδ knockdown McA cells incubated in MCD medium with palmitic acid. Our studies show that PKCδ activation and protein levels are elevated in an animal model of steatohepatitis, which was recapitulated in a cell model, supporting the conclusion that PKCδ plays a role in ALT release, the ER stress signal, and cell death.  相似文献   

16.
17.
Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine that promotes atherosclerosis and is a mediator of the response to arterial injury. We previously demonstrated that platelet-derived growth factor (PDGF) and angiotensin II (Ang) induce the accumulation of MCP-1 mRNA in vascular smooth muscle cells mainly by increasing mRNA stability. In the present study, we have examined the signaling pathways involved in this stabilization of MCP-1 mRNA. The effect of PDGF (BB isoform) and Ang on MCP-1 mRNA stability was mediated by the PDGF β and angiotensin II receptor AT1R, respectively, and did not involve transactivation between the two receptors. The effect of PDGF-BB was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphoinositol 3-kinase (PI3K), Src, or NADPH oxidase (NADPHox). In contrast, the effect of Ang was blocked by inhibitors of Src, and PKC, but not by inhibitors of PI3 K, or NADPHox. The effect of PDGF BB on MCP-1 mRNA stability was blocked by siRNA directed against PKCδ and protein kinase D (PKD), whereas the effect of Ang was blocked only by siRNA directed against PKCδ. These results suggest that the enhancement of MCP-1 mRNA stability by PDGF-BB and Ang are mediated by distinct “proximal” signaling pathways that converge on activation of PKCδ. This study identifies a novel role for PKCδ in mediating mRNA stability in smooth muscle cells.  相似文献   

18.
1. Using agonists and antagonists with specificity toward various isozymes, we have examined the role of protein kinase C (PKC) in long-term potentiation (LTP) in rat hippocampal areas CA1 and CA3.2. Agonists (indolactum V but not phorbol ester) and antagonists (sphingosine, staurosporine, chelerytherene) acting at all PKC isozymes reduce or block LTP induction at both sites.3. However ingenol, a relatively specific agonist at the δ and ε isozymes, blocks LTP in the MF-CA3 pathway, but not in the SC-CA1 pathway.4. Go6976, a relatively specific antagonist of the α and β isozymes, blocks LTP in the SC-CA1 pathway at both ages tested (30- and 60-day-old animals), but blocks LTP in the MF-CA3 in 60 but not 30-day-old animals.5. Our studies indicate that different PKC isozymes are crucial to LTP induction in these two areas of hippocampus, and that there are development changes in the profile of isozymes.  相似文献   

19.
Aplog-1 is a simplified analog of the tumor-promoting aplysiatoxin with anti-proliferative and cytotoxic activities against several cancer cell lines. Our recent findings have suggested that protein kinase Cδ (PKCδ) could be one of the target proteins of aplog-1. In this study, we synthesized amide-aplog-1 (3), in which the C-1 ester group was replaced with an amide group, to improve chemical stability in vivo. Unfortunately, 3 exhibited seventy-fold weaker binding affinity to the C1B domain of PKCδ than that of aplog-1, and negligible anti-proliferative and cytotoxic activities even at 10?4 M. A conformational analysis and density functional theory calculations indicated that the stable conformation of 3 differed from that of aplog-1. Since 27-methyl and 27-methoxy derivatives (1, 2) without the ability to bind to PKC isozymes exhibited marked anti-proliferative and cytotoxic activities at 10?4 M, 3 may be an inactive control to identify the target proteins of aplogs.  相似文献   

20.

Background

Oxidative stress is a key pathophysiological mechanism contributing to degenerative processes in many neurodegenerative diseases and therefore, unraveling molecular mechanisms underlying various stages of oxidative neuronal damage is critical to better understanding the diseases and developing new treatment modalities. We previously showed that protein kinase C delta (PKCδ) proteolytic activation during the late stages of oxidative stress is a key proapoptotic signaling mechanism that contributes to oxidative damage in Parkinson's disease (PD) models. The time course studies revealed that PKCδ activation precedes apoptotic cell death and that cells resisted early insults of oxidative damage, suggesting that some intrinsic compensatory response protects neurons from early oxidative insult. Therefore, the purpose of the present study was to characterize protective signaling pathways in dopaminergic neurons during early stages of oxidative stress.

Results

Herein, we identify that protein kinase D1 (PKD1) functions as a key anti-apoptotic kinase to protect neuronal cells against early stages of oxidative stress. Exposure of dopaminergic neuronal cells to H2O2 or 6-OHDA induced PKD1 activation loop (PKD1S744/748) phosphorylation long before induction of neuronal cell death. Blockade of PKCδ cleavage, PKCδ knockdown or overexpression of a cleavage-resistant PKCδ mutant effectively attenuated PKD1 activation, indicating that PKCδ proteolytic activation regulates PKD1 phosphorylation. Furthermore, the PKCδ catalytic fragment, but not the regulatory fragment, increased PKD1 activation, confirming PKCδ activity modulates PKD1 activation. We also identified that phosphorylation of S916 at the C-terminal is a preceding event required for PKD1 activation loop phosphorylation. Importantly, negative modulation of PKD1 by the RNAi knockdown or overexpression of PKD1S916A phospho-defective mutants augmented oxidative stress-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 or constitutively active PKD1 plasmids attenuated oxidative stress-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury.

Conclusion

Collectively, our results demonstrate that PKCδ-dependent activation of PKD1 represents a novel intrinsic protective response in counteracting early stage oxidative damage in neuronal cells. Our results suggest that positive modulation of the PKD1-mediated compensatory protective mechanism against oxidative damage in dopaminergic neurons may provide novel neuroprotective strategies for treatment of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号