首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Phytomedicine》2014,21(12):1689-1694
Protozoan diseases, such as leishmaniasis, are a cause of considerable morbidity throughout the world, affecting millions every year. In this study, two triterpenic acids (maslinic and oleanolic acids) were isolated from Tunisian olive leaf extracts and their in vitro activity against the promastigotes stage of Leishmania (L.) infantum and Leishmania (L.) amazonensis was investigated. Maslinic acid showed the highest activity with an IC50 of 9.32 ± 1.654 and 12.460 ± 1.25 μg/ml against L. infantum and L. amazonensis, respectively. The mechanism of action of these drugs was investigated by detecting changes in the phosphatidylserine (PS) exposure, the plasma membrane permeability, the mitochondrial membrane potential and the ATP level production in the treated parasites. By using the fluorescent probe SYTOX® Green, both triterpenic acids showed that they produce a time-dependent plasma membrane permeabilization in the treated Leishmania species. In addition, spectrofluorimeteric data revealed the surface exposure of PS in promastigotes. Both molecules reduced the mitochondrial membrane potential and decreased the ATP levels to 15% in parasites treated with IC90 for 24 h. We conclude that the triterpenic acids tested in this study, show potential as future therapeutic alternative against leishmaniasis. Further studies are needed to confirm this.  相似文献   

2.
The evaluation of the leishmanicidal and trypanocidal activity of the hydroalcoholic extract of the bark of Stryphnodendron rotundifolium Mart. (EHCSR) was carried out to find an alternative treatment for parasitic diseases. EHCSR was prepared and used at four different concentrations (1000, 500, 250, 125 μg/mL) in in vitro assays for activity against Leishmania promastigotes using the species Leishmania brasiliensis and Leishmania infantum and for trypanocidal activity using the epimastigotes of Trypanosoma cruzi. We also tested EHCSR for cytotoxicity against adhered cultured Murine J774 fibroblasts. The tests were performed in triplicate, and the percent mortality of parasites, IC50 and percent toxicity were determined. With regard to anti-leishmania activity against L. infantum, there was a mean mortality of 45% at all concentrations, and against L. brasiliensis, a substantial effect was seen at 1000 μg/mL with 56.38% mortality, where the IC50 values were 1338.76 and 987.35 μg/mL, respectively. Trypanocidal activity was notably high at 1000 μg/mL extract with 82.31% mortality of epimastigotes. Cytotoxicity at the highest extract concentrations of 500 and 1000 μg/mL was respectively 75.12% and 94.14%, with IC50 = 190.24 μg/mL. Despite that the extract has anti-parasitic activity, its substantial cytotoxicity against fibroblasts cells makes its systemic use nonviable as a therapeutic alternative.  相似文献   

3.
Nature has provided inspiration for Drug Discovery studies and amphibian secretions have been used as a promising source of effective peptides which could be explored as novel drug prototypes for neglected parasitic diseases as Leishmaniasis and Chagas disease. In this study, we isolated four antimicrobial peptides (AMPs) from Phyllomedusa nordestina secretion, and studied their effectiveness against Leishmania (L.) infantum and Trypanosoma cruzi. The antiparasitic fractions were characterized by mass spectrometry and Edman degradation, leading to the identification of dermaseptins 1 and 4 and phylloseptins 7 and 8. T. cruzi trypomastigotes were susceptible to peptides, showing IC50 values in the range concentration of 0.25–0.68 μM. Leishmania (L.) infantum showed susceptibility to phylloseptin 7, presenting an IC50 value of 10 μM. Except for phylloseptin 7 which moderate showed cytotoxicity (IC50 = 34 μM), the peptides induced no cellular damage to mammalian cells. The lack of mitochondrial oxidative activity of parasites detected by the MTT assay, suggested that peptides were leishmanicidal and trypanocidal. By using the fluorescent probe SYTOX® Green, dermaseptins 1 and 4 and phylloseptins 7 and 8 showed time-dependent plasma membrane permeabilization of T. cruzi; phylloseptin 7 also showed a similar effect in Leishmania parasites. The present study demonstrates for the first time that AMPs target the plasma membrane of Leishmania and T. cruzi, leading to cellular death. Considering the potential of amphibian peptides against protozoan parasites and the reduced mammalian toxicity, they may contribute as scaffolds for drug design studies.  相似文献   

4.
《Phytochemistry letters》2008,1(4):171-174
A series of eleven biflavonoids containing amentoflavone and hinokiflavone derivatives from the Indian medicinal herb Selaginella bryopteris has been investigated for their antiprotozoal activity using in vitro assays against the K1 strain of Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei rhodesiense and Trypanosoma cruzi. The highest antiprotozoal activity was displayed by 7,4′,7″-tri-O-methylamentoflavone which exhibited an IC50 of 0.26 μM. This compound showed no significant cytotoxicity (IC50 > 150 μM) evaluated using L-6 cells. The strongest activity against Leishmania was detected for 2,3-dihydrohinokiflavone (IC50 = 1.6 μM), whereas for Trypanosoma no significant activity was observed (IC50 > 12.5 μg/mL for the extract). To evaluate the in vivo activity against Plasmodium of the most active compound, trimethylated amentoflavones were obtained by partial synthesis starting from amentoflavone. The synthesized mixture of trimethylated amentoflavones did not show activity in the Plasmodium berghei mouse model against female NMRI mice at 50 mg/kg.  相似文献   

5.
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes.  相似文献   

6.
The dichloromethane extract of Larrea tridentata (Creosote bush, Zygophyllaceae) showed activity against the protozoan pathogens Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum (IC50 2.8, 14.6, 5.2, 2.9 μg/ml, cytotoxicity against L6 rat skeletal myoblasts: 25.4 μg/ml).In search for potentially active constituents, nine lignans (three dibenzylbutanes, four epoxylignans, two aryltetralins), six flavonoids and one ester of ferulic acid (3′-oxohexylferulate) were isolated and identified by spectroscopic methods.Since some ambiguities with respect to the absolute configuration of several chiral lignans from L. tridentata were found in the literature, CD spectra were recorded and correlated with results from quantum mechanical spectra simulations (TD-DFT at the B3LYP/6-31D(d,p) level). Thereby, the absolute stereochemistry of these lignans can now be assigned with certainty.The activity of the isolated constituents against the protozoan parasites was investigated. The major lignan meso-nordihydroguaiaretic acid (NDGA), mainly responsible for the anti-inflammatory effects of this plant, was found to be the most active compound (IC50 values: 4.5, 33.1, 12.0 and 7.7 μM against the mentioned parasites, respectively, 33.1 μM for cytotoxicity against L6 rat skeletal myoblasts). Although its level of activity is only moderate, NDGA can thus also be considered the main active compound for the antiprotozoal activity of L. tridentata.  相似文献   

7.
Several anti-leishmanial drugs of choice are of plant origin. Many of the available drugs against the disease are toxic and in certain cases parasite drug resistance is developed. The development of new compounds is urgently required.Aims of the studyTo determine the leishmanicidal activity of the Nuphar lutea plant extract against Leishmania major in vitro.Materials and methodsThe leishmanicidal activity of methanolic plant extract against L. major free living promastigotes and intracellular amastigotes was evaluated, using microscopic examinations and the enzymatic XTT assay.ResultsMethanolic extract of N. lutea was highly effective against both Leishmania promastigotes and L. amastigotes (IC50=2±0.12 μg/ml; ID50=0.65±0.023 μg/ml; LD50=2.1±0.096 μg/ml, STI=3.23). The extract at 1.25 μg/ml totally eliminated the intracellular parasites within 3 days of treatment. Also, a synergistic anti-leishmanial activity was demonstrated with N. lutea extract combined with the anti-leishmanial drug – paromomycin. The partially purified N. lutea active component was found to be a thermo-stable alkaloid(s) with no electrical charge and is resistant to boiling and to methanol, dichloromethane and xylene treatment.ConclusionsThe present study suggests that N. lutea might be a potential source of anti-leishmanial compounds.  相似文献   

8.
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure–activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5ah and 6ah. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 ± 2.8 and 3.5 ± 1.8 μM for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 ± 2.8 μM. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection.  相似文献   

9.
Leishmaniasis is one of the major infectious diseases affecting the poorest regions of the world. The present study evaluated the antileishmanial activity of a guaianolide purified from the hydroalcoholic extract of aerial parts of Tanacetum parthenium (L.) Schultz Bip. The isolated compound showed activity against the promastigote form of Leishmania amazonensis, with 50% inhibition (IC50) of cell growth at a concentration of 2.6 μg/ml. For the intracellular amastigote form, this guaianolide reduced by 10% the survival index of parasites in macrophages when it was used at 20.0 μg/ml. The selective index (SI) ratio (CC50 for J774G8 cells/IC50 for protozoans) was 385, showing that it is more selective against the parasite than mammalian cells. Morphological alterations of protozoans treated with IC50 included changes in size, shape, and structure (more than one nucleus and flagellum) under both light and scanning electron microscopies.  相似文献   

10.
Aromatic oligovalent glycosyl disulfides and some diglycosyl disulfides were tested against three different Trypanosoma cruzi strains. Di-(β-d-galactopyranosyl-dithiomethylene) benzenes 2b and 4b proved to be the most active derivatives against all three strains of cell culture-derived trypomastigotes with IC50 values ranging from 4 to 11 μM at 37 °C. The inhibitory activities were maintained, although somewhat lowered, at a temperature of 4 °C as well. Three further derivatives displayed similar activities against at least one of the three strains. Low cytotoxicities of the active compounds, tested on confluent HeLa, Vero and peritoneal macrophage cell cultures, resulted in significantly higher selectivity indices (SI) than that of the reference drug benznidazole. Remarkably, several molecules of the tested panel strongly inhibited the parasite release from T. cruzi infected HeLa cell cultures suggesting an effect against the intracellular development of T. cruzi amastigotes as well.  相似文献   

11.
Thirteen new polyamine derivatives coupled to hydroxybenzotriazole have been synthesized and evaluated for their in vitro antikinetoplastid activity. Trypanosoma Trypanothione reductase (TryR) was envisioned as a potential target. Among all tested molecules, only one compound, a N3-spermidine–benzotriazole derivative, displayed relevant inhibitory activity on this enzyme but was not active on parasites. The corresponding Boc-protected spermidine–benzotriazole was however trypanocidal against Trypanosoma brucei gambiense with an IC50 value of 1 μM and was completely devoid of cytotoxicity. On the intramacrophage amastigotes of Leishmania donovani, a N2-spermidine conjugate of this series, exhibited an interesting IC50 value of 3 μM associated with both low cytotoxicity against axenic Leishmania donovani. These new compounds are promising leads for the development of antikinetoplastid agents and their targets have to be deciphered.  相似文献   

12.
Two new benzochromenes, (6,6-dimethyl-2-methoxy-6H-benzo[c]chromen-9-yl)methanol (1), and 2-methoxy-6,6-dimethyl-6H-benzo[c]chromen-9-carbaldehyde (2), together with several already known metabolites, were isolated from the root extract of Bourreria pulchra (Boraginaceae). The structures of 1 and 2 were established on the basis of their spectroscopic data. Both were assayed for in vitro antiprotozoan activity, and especially 1 was found to possess significant activity against Leishmania mexicana and Trypanosoma cruzi parasites (IC50 4.6 μg/mL and 7.5 μg/mL, respectively).  相似文献   

13.
Secochiliolide acid (1) isolated from the Patagonian shrub Nardophyllum bryoides, was used as a scaffold for the preparation of a series of nine derivatives. Compound 1 and its derivatives were tested against Trypanosoma cruzi epimastigotes grown in liquid media. It was first observed that secochiliolide acid (1) inhibited the proliferation of the parasites, with an IC50 of 2 μg/mL. Six of the synthesized derivatives were also active with IC50’s between 2 and 7 μg/mL which are comparable to that of the commercial drug benznidazole (2.5 μg/mL). These results indicate that the carboxyl group is not essential for the bioactivity of 1, while the presence of the tetrasubstituted exocyclic double bond seems to be important. Moreover, the presence of the furan and spirolactone rings is not essential for the bioactivity per se, but is important in combination with other structural fragments present in the molecule.  相似文献   

14.
RNA viruses are a major source of respiratory diseases worldwide. The lack of effective therapeutical treatment underlines the importance of research for new antiviral compounds. Raoulic acid is a principal ingredient of the plant Raoulia australis Hook. F. Antiviral assay using cytopathic effect (CPE) reduction method showed that raoulic acid possessed strong antiviral activity against human rhinovirus 2 (HRV2) with a 50% inhibition concentration (IC50) value of less than 0.1 μg/ml, human rhinovirus 3 (HRV3) with a IC50 value of 0.19 μg/ml, coxsackie B3 (CB3) virus with IC50 values of 0.33 μg/ml, coxsackie B4 (CB4) virus with IC50 values of 0.40 μg/ml, and enterovirus 71 (EV71) virus with IC50 values of less than 0.1 μg/ml. However, the compound did not possess antiviral activity against influenza A (Flu A/PR, Flu A/WS, H1N1) and B viruses at four concentrations ranging from 0.1 to 100 μg/ml.  相似文献   

15.
The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW–AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW–AgNP showed plasmon resonance reduction in UV–vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW–AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW–AgNP were toxic to Anopheles stephensi larvae and pupae, LC50 were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW–AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW–AgNP IC50 were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC50 were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW–AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW–AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW–AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW–AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.  相似文献   

16.
Leishmaniasis is a public health problem in tropical and subtropical areas of the world, including Venezuela. The incidence of treatment failure and the number of cases with Leishmania-HIV co-infection underscore the importance of developing alternative, economical and effective therapies against this disease. The work presented here analyzed whether terpenoids derived from betulin are active against New World Leishmania parasites. Initially we determined the concentration that inhibits the growth of these parasites by 50% or IC50, and subsequently evaluated the chemotactic effect of four compounds with leishmanicidal activity in the sub-micromolar and micromolar range. That is, we measured the migratory capacity of Leishmania (V.) braziliensis in the presence of increasing concentrations of compounds. Finally, we evaluated their cytotoxicity against the host cell and their effect on the infectivity of L. (V.) braziliensis. The results suggest that (1) compounds 14, 17, 18, 25 and 27 are active at concentrations lower than 10 μM; (2) compound 26 inhibits parasite growth with an IC50 lower than 1 μM; (3) compounds 18, 26 and 27 inhibit parasite migration at pico- to nanomolar concentrations, suggesting that they impair host–parasite interaction. None of the tested compounds was cytotoxic against J774.A1 macrophages thus indicating their potential as starting points to develop compounds that might affect parasite–host cell interaction, as well as being leishmanicidal.  相似文献   

17.
Although a worldwide health problem, leishmaniasis is considered a highly neglected disease, lacking efficient and low toxic treatment. The efforts for new drug development are based on alternatives such as new uses for well-known drugs, in silico and synthetic studies and naturally derived compounds. Oleanolic acid (OA) is a pentacyclic triterpenoid widely distributed throughout the Plantae kingdom that displays several pharmacological activities. OA showed potent leishmancidal effects in different Leishmania species, both against promastigotes (IC50 L. braziliensis 30.47 ± 6.35 μM; IC50 L. amazonensis 40.46 ± 14.21 μM; IC50 L. infantum 65.93 ± 15.12 μM) and amastigotes (IC50 L. braziliensis 68.75 ± 16.55 μM; IC50 L. amazonensis 38.45 ± 12.05 μM; IC50 L. infantum 64.08 ± 23.52 μM), with low cytotoxicity against mouse peritoneal macrophages (CC50 235.80 ± 36.95 μM). Moreover, in silico studies performed to evaluate OA molecular properties and to elucidate the possible mechanism of action over the Leishmania enzyme sterol 14α-demethylase (CYP51) suggested that OA interacts efficiently with CYP51 and could inhibit the ergosterol synthesis pathway. Collectively, these data indicate that OA is a good candidate as leading compound for the development of a new leishmaniasis treatment.  相似文献   

18.
In this study, we designed and synthesized a series of thiophen-2-iminothiazolidine derivatives from thiophen-2-thioureic with good anti-Trypanosoma cruzi activity. Several of the final compounds displayed remarkable trypanocidal activity. The ability of the new compounds to inhibit the activity of the enzyme cruzain, the major cysteine protease of T. cruzi, was also explored. The compounds 3b, 4b, 8b and 8c were the most active derivatives against amastigote form, with significant IC50 values between 9.7 and 6.03 μM. The 8c derivative showed the highest potency against cruzain (IC50 = 2.4 μM). Molecular docking study showed that this compound can interact with subsites S1 and S2 simultaneously, and the negative values for the theoretical energy binding (Eb = −7.39 kcal·mol−1) indicates interaction (via dipole–dipole) between the hybridized sulfur sp3 atom at the thiazolidine ring and Gly66. Finally, the results suggest that the thiophen-2-iminothiazolidines synthesized are important lead compounds for the continuing battle against Chagas disease.  相似文献   

19.
A new small library of 2-aminobenzoyl amino acid hydrazide derivatives and quinazolinones derivatives was synthesized and fully characterized by IR, NMR, and elemental analysis. The activity of the prepared compounds on the growth of Leishmania aethiopica promastigotes was evaluated. 2-Benzoyl amino acid hydrazide showed higher inhibitory effect than the quinazoline counterpart. The in vitro antipromastigote activity demonstrated that compounds 2a, 2b, 2f and 4a had IC50 better than standard drug miltefosine and comparable activity to amphotericin B deoxycholate, which indicates their high antileishmanial activity against Leishmania. aethiopica. Among the prepared compounds; 2-amino-N-(6-hydrazinyl-6-oxohexyl)benzamide 2f (IC50 = 0.051 μM) has the best activity, 154 folds more active than reference standard drug miltefosine (IC50 = 7.832 μM), and half fold the activity of amphotericin B (IC50 = 0.035 μM). In addition, this compound was safe and well tolerated by experimental animals orally up to 250 mg/kg and parenterally up to 100 mg/kg.  相似文献   

20.
A novel series of 1,2,4-triazino-[5,6b]indole-3-thione covalently linked to 7-chloro-4-aminoquinoline have been synthesized and evaluated for their in vitro activity against extracellular promastigote and intracellular amastigote form of Leishmania donovani. Among all tested compounds, compounds 7a and 7b were found to be the most active with IC50 values 1.11, 0.36 μM and selectivity index (SI) values 67, >1111, respectively, against amastigote form of L. donovani which is several folds more potent than the standard drugs, miltefosine (IC50 = 8.10 μM, SI = 7) and sodium stibo-gluconate (IC50 = 54.60 μM, SI  7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号