首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
miR-33 and miR-122 are major regulators of lipid metabolism in the liver, and their deregulation has been linked to the development of metabolic diseases such as obesity and metabolic syndrome. However, the biological importance of these miRNAs has been defined using genetic models. The aim of this study was to evaluate whether the levels of miR-122 and miR-33a in rat liver correlate with lipemia in nutritional models. For this purpose, we analyzed the levels of miRNA-33a and miR-122 in the livers of dyslipidemic cafeteria diet-fed rats and of cafeteria diet-fed rats supplemented with proanthocyanidins and/or ω-3 PUFAs because these two dietary components are well-known to counteract dyslipidemia. The results showed that the dyslipidemia induced in rats that were fed a cafeteria diet resulted in the upregulation of miR-33a and miR-122 in the liver, whereas the presence of proanthocyanidins and/or ω-3 PUFAs counteracted the increase of these two miRNAs. However, srebp2, the host gene of miR-33a, was significantly repressed by ω-3 PUFAs but not by proanthocyanidins. Liver mRNA levels of the miR-122 and miR-33a target genes, fas and pparβ/δ, cpt1a and abca1, respectively, were consistent with the expression of these two miRNAs under each condition. Moreover, the miR-33a and abca1 levels were also analyzed in PBMCs. Interestingly, the miR-33a levels evaluated in PBMCs under each condition were similar to the liver levels but enhanced. This demonstrates that miR-33a is expressed in PBMCs and that these cells can be used as a non-invasive way to reflect the expression of this miRNA in the liver. These findings cast new light on the regulation of miR-33a and miR-122 in a dyslipidemic model of obese rats and the way these miRNAs are modulated by dietary components in the liver and in PBMCs.  相似文献   

2.
3.
4.
目的:建立生物传感器检测小鼠肝脏中microRNA (miRNA)活性的方法,测定miR-21在正常小鼠肝脏中的活性。方法:首先,分子克隆方法构建检测miRNA活性的通用型质粒传感器Dsensor。将各种miRNA的互补序列插入Dsensor中构建成相应miRNA活性检测传感器。用水动力法将检测miR-21的Dsensor注射至正常小鼠体内,以miR-122 Dsensor为阳性对照,miR-206 Dsensor为阴性对照,以不插入任何miRNA互补序列的Dsensor为空白对照。不同时间点尾静脉采血测定Gluc表达,处死小鼠测定肝脏中Fluc表达,比较计算得出miRNA活性。最后,用QRT-PCR法测定小鼠肝脏组织中miR-21、miR-122和miR-206表达水平。结果:用RIF(Relative inhibiting fold)值表示miRNA活性,miR-21、miR-122和miR-206活性分别为80.03±21.25,29.90±5.90和0.92±0.29,表明小鼠正常肝脏中miR-21的负调控活性明显高于miR-122。然而,QRT-PCR法测定结果显示,miR-21的表达水平明显低于miR-122,而miR-206几乎没有表达。从miR-21与miR-122的活性与表达水平比较发现,miR-21的表达水平并没有真实反映其活性。结论:成功建立了一种小鼠肝脏中miRNA活性检测方法;首次发现小鼠正常肝脏中miR-21活性水平比miR-122更高,而表达水平却明显低于miR-122。提示miR-21对于维持肝脏的正常生理功能的重要作用,值得进一步研究其调控的靶基因和机理。  相似文献   

5.
As the most abundant liver-specific microRNA (miRNA), miR-122 has been extensively studied for its role in the regulation of lipid metabolism, hepatocarcinogenesis and hepatitis C virus (HCV) replication, but little is known regarding its role in the replication of Hepatitis B virus (HBV), a highly prevalent hepatotropic virus that can cause life-threatening complications. In this study we examined the effects of antisense inhibition of miR-122 and transfection of a miR-122 mimic on HBV expression in hepatoma cells. The over-expression of miR-122 inhibited HBV expression, whereas the depletion of endogenous miR-122 resulted in increased production of HBV in transfected cells. We further found that the down-regulation of Heme oxygenase-1 (HO-1) by miR-122 plays a negative role in the miR-122-mediated inhibition of viral expression. Our study demonstrates the anti-HBV activity of miR-122, suggesting that therapies that increase miR-122 and HO-1 may be an effective strategy to limit HBV replication.  相似文献   

6.
人肝脏特异性miR-122表达载体的构建及鉴定   总被引:3,自引:0,他引:3  
人肝脏特异性miRNA-122是肝脏中表达丰度最高的miRNA。为研究该miR-122的生物学功能,从HepG2细胞基因组中用PCR的方法扩增了miR-122的前体,构建了miR-122的表达载体pLMP-miR-122。pLMP-miR-122质粒转染人正常肝细胞系L-O2和肝癌细胞系HepG2后,细胞内成熟miRNA-122的表达量显著增加。该质粒与HBV1.3共转染HepG2细胞72h后,HBV的HBs和HBe蛋白水平的表达量均下降,说明miRNA-122参与了HBV基因的复制和表达的调控,为进一步研究miRNA-122的功能和其他一些肝病如HCC的调控机制打下基础。  相似文献   

7.
8.
MicroRNAs (miRNAs) have been implicated in the orchestration of diverse cellular processes including differentiation, proliferation, and apoptosis and are believed to play pivotal roles as oncogenes and tumor suppressors. miR-122, a liver specific miRNA, is significantly down-regulated in most hepatocellular carcinomas (HCCs) but its role in tumorigenesis remains poorly understood. Here we identify AKT3 as a novel and direct target of miR-122. Restoration of miR-122 expression in HCC cell lines decreases AKT3 levels, inhibits cell migration and proliferation, and induces apoptosis. These anti-tumor phenotypes can be rescued by reconstitution of AKT3 expression indicating the essential role of AKT3 in miR-122 mediated HCC transformation. In vivo, restoration of miR-122 completely inhibited xenograft growth of HCC tumor in mice. Our data strongly suggest that miR-122 is a tumor suppressor that targets AKT3 to regulate tumorigenesis in HCCs and a potential therapeutic candidate for liver cancer.  相似文献   

9.
miRNAs (microRNAs) are important regulators of gene expression. In higher eukaryotes, the tightly controlled expression of different miRNAs, each of which regulates multiple target mRNAs, is crucial for the maintenance of tissue type and the control of differentiation. miR-122 is a highly liver-specific miRNA that is important in hepatitis C virus infection, cholesterol metabolism and hepatocellular carcinoma. In the present review, we discuss the effects of miR-122 on liver physiology and pathology. Recent evidence of pathways involved in the regulation of miR-122 expression is also considered.  相似文献   

10.
目的 探讨益生菌干预对高脂饮食诱导肥胖小鼠肝脏miR-33和miR-122表达的影响。方法 18只雌性C57BL/6J小鼠随机分为对照组、肥胖组和益生菌干预组,每组6只,分别给予标准饲料、高脂饲料以及高脂饲料+益生菌合剂灌胃,自由采食及饮水,连续喂养6周。每周测量3组小鼠的体质量,6周后,留取小鼠血液样本采用全自动生化仪检测小鼠血脂,安乐法处死小鼠,留取小鼠肝脏样本Hair-pin RT-PCR法检测miR-33和miR-122的含量。结果 与对照组小鼠相比,肥胖组小鼠体质量明显增加(t2周=3.985,t3周=4.751,t4周=4.380,t5周=4.728,t6周=4.112,均P<0.01);益生菌干预组小鼠体质量较肥胖组明显降低(t3周=3.694,t4周=4.415,t5周=3.752,t6周=3.392,均P<0.01);肥胖组小鼠血清总胆固醇、低密度脂蛋白含量较对照组明显升高(t=10.850,t=7.024,均P<0.01),益生菌干预组小鼠较肥胖组小鼠血清总胆固醇、低密度脂蛋白含量降低(t=3.034,t=2.881,均P<0.05),但与对照组仍有差异。与对照组小鼠相比,肥胖组小鼠肝脏miR-122的表达升高(t=9.170,P<0.01),miR-33的表达降低(t=3.420,P<0.05),益生菌干预组小鼠较肥胖组小鼠miR-122的表达降低(t=3.204,P<0.05),miR-33的表达升高(t=2.070,P<0.05)。结论 益生菌干预能够影响高脂饮食小鼠肝脏miR-33和miR-122的表达,这可能是益生菌干预改善高脂饮食小鼠肝脏脂代谢的机制之一。  相似文献   

11.
MicroRNA-122 (miR-122) is an abundant liver-specific miRNA, implicated in fatty acid and cholesterol metabolism as well as hepatitis C viral replication. Here, we report that a systemically administered 16-nt, unconjugated LNA (locked nucleic acid)-antimiR oligonucleotide complementary to the 5′ end of miR-122 leads to specific, dose-dependent silencing of miR-122 and shows no hepatotoxicity in mice. Antagonism of miR-122 is due to formation of stable heteroduplexes between the LNA-antimiR and miR-122 as detected by northern analysis. Fluorescence in situ hybridization demonstrated uptake of the LNA-antimiR in mouse liver cells, which was accompanied by markedly reduced hybridization signals for mature miR-122 in treated mice. Functional antagonism of miR-122 was inferred from a low cholesterol phenotype and de-repression within 24 h of 199 liver mRNAs showing significant enrichment for miR-122 seed matches in their 3′ UTRs. Expression profiling extended to 3 weeks after the last LNA-antimiR dose revealed that most of the changes in liver gene expression were normalized to saline control levels coinciding with normalized miR-122 and plasma cholesterol levels. Combined, these data suggest that miRNA antagonists comprised of LNA are valuable tools for identifying miRNA targets in vivo and for studying the biological role of miRNAs and miRNA-associated gene-regulatory networks in a physiological context.  相似文献   

12.
13.

Background and Aims

Micro-RNAs (miRNAs) have recently emerged as crucial modulators of molecular processes involved in chronic liver diseases. The few miRNAs with previously proposed roles in liver cirrhosis were identified in screening approaches on liver parenchyma, mostly in rodent models. Therefore, in the present study we performed a systematic screening approach in order to identify miRNAs with altered levels in the serum of patients with chronic liver disease and liver cirrhosis.

Methods

We performed a systematic, array-based miRNA expression analysis on serum samples from patients with liver cirrhosis. In functional experiments we evaluated the relationship between alterations of miRNA serum levels and their role in distinct cellular compartments involved in hepatic cirrhosis.

Results

The array analysis and the subsequent confirmation by qPCR in a larger patient cohort identified significant alterations in serum levels of miR-513-3p, miR-571 and miR-652, three previously uncharacterized miRNAs, in patients with alcoholic or hepatitis C induced liver cirrhosis. Of these, miR-571 serum levels closely correlated with disease stages, thus revealing potential as a novel biomarker for hepatic cirrhosis. Further analysis revealed that up-regulation of miR-571 in serum reflected a concordant regulation in cirrhotic liver tissue. In isolated primary human liver cells, miR-571 was up-regulated in human hepatocytes and hepatic stellate cells in response to the pro-fibrogenic cytokine TGF-β. In contrast, alterations in serum levels of miR-652 were stage-independent, reflecting a concordant down-regulation of this miRNA in circulating monocytes of patients with liver cirrhosis, which was inducible by proinflammatory stimuli like bacterial lipopolysaccharide.

Conclusion

Alterations of miR571 and miR-652 serum levels in patients with chronic liver disease reflect their putative roles in the mediation of fibrogenic and inflammatory processes in distinct cellular compartments involved in the pathogenesis of liver cirrhosis.  相似文献   

14.
Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of diseases from simple steatosis to non-alcoholic steatohepatitis, with approximately 20% risk of progressing to fibrosis and cirrhosis. The aim of this study was to compare the relative expression levels of circulating miR-21, miR-34a, miR-122, miR-125b and miR-375 between healthy controls and NAFLD patients, and to assess the feasibility of microRNAs as potential biomarkers for NAFLD. A cross-sectional study was conducted to evaluate circulating serum miRNAs as potential diagnostic markers for NAFLD. Twenty-eight clinically diagnosed and histologically-confirmed NAFLD patients, as well as 36 healthy controls were enrolled in this study. The relative expression of serum microRNAs were calculated using the comparative cycle threshold with spiked-in C. elegans miR-39 as exogenous internal control. Serum levels of miR-34a and miR-122 were significantly higher in NAFLD patients than in healthy controls (P = <0.0001). Positive correlations were observed between serum miR-34a with very low density lipoprotein cholesterol (VLDL-C) and triglyceride levels. However, the expression levels of miR-34a and miR-122 did not correlate with the histological features of NAFLD. Interestingly, receiver operating characteristic (ROC) curve analysis revealed that miR-34a and miR-122 are potential markers for discriminating NAFLD patients from healthy controls with an area under the curve (AUC) values of 0.781 and 0.858, respectively. Serum levels of miR-34a and miR-122 were found to be significantly higher among NAFLD patients, and were positively correlated with VLDL-C and triglyceride levels. Thus, circulating miR-34a and miR-122 can be used as potential biomarkers for discriminating NAFLD patients from healthy controls. Larger cohorts are required to validate the utility of miR-34a and miR-122 in monitoring liver injury.  相似文献   

15.
MicroRNAs (miRNAs) are small non-coding RNA molecules, which have an important function in regulating RNA stability and gene expression. They also can circulate in a cell-free form in the blood thatmakes them potential disease markers. The liver contains various classes of miRNAs in which miR-122 accounts for about 70% of all miRNAs and it has been proved that its level increases in case of liver damage. Here, we investigated plasma levels of miR-122 as a useful disease parameter in patients with chronic hepatitis C (CHC) infection. Thirty five hemophilia and thalassemia patients with CHC were studied. The total RNA was extracted from plasma samples, and miR-122 levels were measured by qPCR and then compared with the specific liver markers. The plasma levels of alanine transaminase (ALT) and aspartate transaminase(AST) were correlated with plasma miR-122 level in CHC patients, and the level of circulating miR-122 in healthy individual groups were rarely lower than those of patients with CHC. In our study, miR-122 levels correlated well with markers of liver inflammatory activity. Plasma miR-122 can be assumed to be another marker in liver similar to the currently used specific markers such as ALT and AST for evaluation of liver damage in hepatitis C virus (HCV) infected patients. Moreover, the correlation between miR-122 and ALT was shown to be higher than between miR-122 and AST.  相似文献   

16.
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting   总被引:21,自引:0,他引:21  
Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in reduced plasma cholesterol levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic fatty-acid and cholesterol synthesis rates. Activation of the central metabolic sensor AMPK was also increased. miR-122 inhibition in a diet-induced obesity mouse model resulted in decreased plasma cholesterol levels and a significant improvement in liver steatosis, accompanied by reductions in several lipogenic genes. These results implicate miR-122 as a key regulator of cholesterol and fatty-acid metabolism in the adult liver and suggest that miR-122 may be an attractive therapeutic target for metabolic disease.  相似文献   

17.
Jopling C 《RNA biology》2012,9(2):137-142
microRNA-122 (miR-122) was one of the first examples of a tissue-specific miRNA. It is highly expressed in liver, where it constitutes 70% of the total miRNA pool. miR-122 expression is specific to the vertebrate lineage, where the sequence of the mature miRNA is completely conserved. miR-122 is a target for extensive study due to its association with cholesterol metabolism and hepatocellular carcinoma, and its important role in promoting hepatitis C virus (HCV) replication. This review will discuss the biogenesis and function of miR-122.  相似文献   

18.
Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkin's lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly.  相似文献   

19.
Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic state of the liver in Rm155LG/Alb-Cre mice.  相似文献   

20.
The regular consumption of flavonoids has been associated with reduced mortality and a decreased risk of cardiovascular diseases. The proanthocyanidins found in plasma are very different from the original flavonoids in food sources. The use of physiologically appropriate conjugates of proanthocyanidins is essential for the in vitro analysis of flavonoid bioactivity.In this study, the effect of different proanthocyanidin-rich extracts, which were obtained from cocoa (CCX), French maritime pine bark (Pycnogenol extract, PYC) and grape seed (GSPE), on lipid homeostasis was evaluated. Hepatic human cells (HepG2 cells) were treated with 25 mg/L of CCX, PYC or GSPE. We also performed in vitro experiments to assess the effect on lipid synthesis that is induced by the bioactive GSPE proanthocyanidins using the physiological metabolites that are present in the serum of GSPE-administered rats. For this, Wistar rats were administered 1 g/kg of GSPE, and serum was collected after 2 h. The semipurified serum of GSPE-administered rats was fully characterized by liquid chromatography tandem triple quadrupole mass spectrometry (LC–QqQ/MS2). The lipids studied in the analyses were free cholesterol (FC), cholesterol ester (CE) and triglycerides (TG).All three proanthocyanidin-rich extracts induced a remarkable decrease in the de novo lipid synthesis in HepG2 cells. Moreover, GSPE rat serum metabolites reduced the total percentage of CE, FC and particularly TG; this reduction was significantly higher than that observed in the cells directly treated with GSPE. In conclusion, the bioactivity of the physiological metabolites that are present in the serum of rats after their ingestion of a proanthocyanidin-rich extract was demonstrated in Hep G2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号