首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatic information is carried only by the parvocellular pathway, giving the neurophysiologist the opportunity for eliciting specific responses. Further subdivision of the parvo chromatic system in two opponent chromatic mechanisms is potentially of great interest, given that the anatomical correlate seems to reside in subclasses of parvo ganglion cells that show differences both in size and in susceptibility to disease. We separately recorded responses arising from each chromatic opponent mechanism using visual stimuli chosen to belong to one of the “cardinal” chromatic axes. A calibrated color monitor, driven by a high resolution (14 bits/gun) computer board, was used for visualization of 1 c/deg isoluminant color gratings, sinusoidally modulated in time at 4 Hz. VECPs were recorded at several color contrasts along both cardinal axes, allowing extrapolation of contrast thresholds. Psychophysical thresholds were derived in the same stimulus conditions for comparison and found to correlate very well with the electrophysiologically derived values, both as intersubject and axis differences. The S-(L+M) opponent mechanism consistently yielded higher thresholds, smaller amplitude, and higher phase lag than the L-M mechanism. This finding was largely explained by the perceptual non-uniformity of the CIE chromaticity diagram. Correcting the VECP data for the perceptual differences yielded comparable responses, supporting the view that the two mechanisms are similarly represented in the cortex. In conclusion, recording of cortical responses to color contrast stimuli belonging to the cardinal chromatic axes seems a reliable procedure and may prove to be useful in performing clinical evaluations that refine the assessment of the physiology of the visual system.  相似文献   

2.
3.
The middle temporal area of the extrastriate visual cortex (area MT) is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning are that 1) training made MT more responsive by reducing motion opponency, 2) MT remained suppressed and alternative visual areas such as V1 enabled learning and/or 3) suppression of MT increased with training, possibly to reduce noise. Here we used fMRI to test these possibilities. We first confirmed that the motion opponent stimulus did indeed suppress the BOLD response within hMT+ compared to an almost identical stimulus without locally balanced motion signals. We then trained participants on motion opponent or non-opponent stimuli. Training with the motion opponent stimulus reduced the BOLD response within hMT+ and greater reductions in BOLD response were correlated with greater amounts of learning. The opposite relationship between BOLD and behaviour was found at V1 for the group trained on the motion-opponent stimulus and at both V1 and hMT+ for the group trained on the non-opponent motion stimulus. As the average response of many cells within MT to motion opponent stimuli is the same as their response to non-directional flickering noise, the reduced activation of hMT+ after training may reflect noise reduction.  相似文献   

4.
The receptive field of a visual neurone is classically defined as the region of space (or retina) where a visual stimulus evokes a change in its firing activity. Intracellular recordings in cat area 17 show that the visually evoked synaptic integration field extends over a much larger area than that established on the basis of spike activity. Synaptic depolarizing (dominant excitation) responses decrease in strength for stimuli that are flashed at increasing distances away from the centre of the discharge field, while their onset latency increases. A detailed spatio-temporal analysis of these electrophysiological data shows that subthreshold synaptic responses observed in the 'silent' surround of cortical receptive fields result from the intracortical spread of activation waves carried by slowly conducting horizontal axons within primary visual cortex. They also predict that a perceptual facilitation may occur when feedforward activation produced by the motion signal in the retina travels in phase in the primary visual cortex with the visually induced spread of horizontal activation. A psychophysical correlate has been obtained in humans, showing that apparent motion produced by a sequence of co-linear Gabor patches, known to preferentially activate V1 orientation selective cells, are perceived by human observers as much faster than non co-linear sequences of the same physical speed.  相似文献   

5.
Engel SA 《Neuron》2005,45(4):613-623
Primary visual cortex contains at least two distinct populations of color-selective cells: neurons in one have circularly symmetric receptive fields and respond best to reddish and greenish light, while neurons in another have oriented receptive fields and a variety of color preferences. The relative prevalence and perceptual roles of the two kinds of neurons remain controversial, however. We used fMRI and a selective adaptation technique to measure responses attributable to these two populations. The technique revealed evidence of adaptation in both populations and indicated that they each produced strong signals in V1 and other human visual areas. The activity of both sets of neurons was also reflected in color appearance measurements made with the same stimuli. Thus, both oriented and unoriented color-selective cells in V1 are important components of the neural pathways that underlie perception of color.  相似文献   

6.
Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces (‘motion streaks’), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast (‘streaky’) or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast (‘streaky’) but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion.  相似文献   

7.
In the past two decades, sensory neuroscience has moved from describing response properties to external stimuli in cerebral cortex to establishing connections between neuronal activity and sensory perception. The seminal studies by Newsome, Movshon and colleagues in the awake behaving macaque firmly link single cells in extrastriate area V5/MT and perception of motion. A decade later, extrastriate visual cortex appears awash with neuronal correlates for many different perceptual tasks. Examples are attentional signals, choice signals for ambiguous images, correlates for binocular rivalry, stereo and shape perception, and so on. These diverse paradigms are aimed at elucidating the neuronal code for perceptual processes, but it has been little studied how they directly compare or even interact. In this paper, I explore to what degree the measured neuronal signals in V5/MT for choice and attentional paradigms might reflect a common neuronal mechanism for visual perception.  相似文献   

8.
Crewther DP  Crewther SG 《PloS one》2010,5(12):e15266
Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature.  相似文献   

9.
Representation of color stimuli in awake macaque primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the responses of single neurons in primary visual cortex (area V1) of awake monkeys to chromatic stimuli. Chromatic tuning properties, determined for homogeneous color patches presented on a neutral gray background, varied strongly between cells. The continuum of preferred chromaticities and tuning widths indicated a distributed representation of color signals in V1. When stimuli were presented on colored backgrounds, chromatic tuning was different in most neurons, and the changes in tuning were consistent with some degree of sensitivity of the neurons to the chromatic contrast between stimulus and background. Quantitatively, the average response changes matched the magnitudes of color induction effects measured in human subjects under corresponding stimulus conditions.  相似文献   

10.
Perception of objects and motions in the visual scene is one of the basic problems in the visual system. There exist 'What' and 'Where' pathways in the superior visual cortex, starting from the simple cells in the primary visual cortex. The former is able to perceive objects such as forms, color, and texture, and the latter perceives 'where', for example, velocity and direction of spatial movement of objects. This paper explores brain-like computational architectures of visual information processing. We propose a visual perceptual model and computational mechanism for training the perceptual model. The compu- tational model is a three-layer network. The first layer is the input layer which is used to receive the stimuli from natural environments. The second layer is designed for representing the internal neural information. The connections between the first layer and the second layer, called the receptive fields of neurons, are self-adaptively learned based on principle of sparse neural representation. To this end, we introduce Kullback-Leibler divergence as the measure of independence between neural responses and derive the learning algorithm based on minimizing the cost function. The proposed algorithm is applied to train the basis functions, namely receptive fields, which are localized, oriented, and bandpassed. The resultant receptive fields of neurons in the second layer have the characteristics resembling that of simple cells in the primary visual cortex. Based on these basis functions, we further construct the third layer for perception of what and where in the superior visual cortex. The proposed model is able to perceive objects and their motions with a high accuracy and strong robustness against additive noise. Computer simulation results in the final section show the feasibility of the proposed perceptual model and high efficiency of the learning algorithm.  相似文献   

11.
We develop a neural network model that instantiates color constancy and color categorization in a single unified framework. Previous models achieve similar effects but ignore important biological constraints. Color constancy in this model is achieved by a new application of the double opponent cells found in the blobs of the visual cortex. Color categorization emerges naturally, as a consequence of processing chromatic stimuli as vectors in a four-dimensional color space. A computer simulation of this model is subjected to the classic psychophysical tests that first uncovered these phenomena, and its response matches psychophysical results very closely.  相似文献   

12.
亮度(luminance)是最基本的视觉信息.与其他视觉特征相比,由于视神经元对亮度刺激的反应较弱,并且许多神经元对均匀亮度无反应,对亮度信息编码的神经机制知之甚少.初级视皮层部分神经元对亮度的反应要慢于对比度反应,被认为是由边界对比度诱导的亮度知觉(brightness)的神经基础.我们的研究表明,初级视皮层许多神经元的亮度反应要快于对比度反应,并且这些神经元偏好低的空间频率、高的时间频率和高的运动速度,提示皮层下具有低空间频率和高运动速度通路的信息输入对产生初级视皮层神经元的亮度反应有贡献.已经知道初级视皮层神经元对空间频率反应的时间过程是从低空间频率到高空间频率,我们发现的早期亮度反应是对极低空间频率的反应,与这一时间过程是一致的,是这一从粗到细的视觉信息加工过程的第一步,揭示了处理最早的粗的视觉信息的神经基础.另外,初级视皮层含有偏好亮度下降和高运动速度的神经元,这群神经元的活动有助于在光照差的环境中检测高速运动的低亮度物体.  相似文献   

13.
Changes in activity of 83 neurons in the rabbit colliculus superior evoked by the replacement of eight color and eight achromatic stimuli in pairs were analyzed. It was found out that neurons displayed the early and late phasic responses (within 50-90 and 120-300 ms respectively, after the replacement) and long-term tonic response component, which depended on stimuli intensity. Analysis of phasic component revealed three neuronal groups. The first group (n=25, 30%) selected on the basis of the earliest component, was specialized to differentiate stimuli only by intensities. The perceptual spaces of these neurons reconstructed on the basis of spike discharge in the earliest response were two-dimensional. The second group of neurons (n=16, 19%) selected on the basis of the late phasic component demonstrated four-dimensional structure of perceptual space. Neurons of the third group (n=4, 5%) possessed a two-dimensional structure of perceptual space reconstructed by the analysis of the early component, whereas analysis of the late response revealed a four-dimensional structure. We suggest that information about differences between stimuli in color and intensity coming from cortical neurons is necessary for the reconstruction of four-dimensional space. The structure of perceptual spaces reconstructed on the basis of phasic responses of neurons in the colliculus superior was similar to the spaces of neurons in the primary visual cortex and lateral geniculate nucleus. The structure of perceptual space reconstructed on the basis of neuronal spikes was also similar to the space calculated from the N85 component of the visual evoked potential recorded under similar conditions. This finding confirms the general principle of vector coding in the visual system.  相似文献   

14.
The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible--adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects.  相似文献   

15.
What we see depends on where we look. This paper characterizes the modulatory effects of point of regard in three-dimensional space on responsiveness of visual cortical neurons in areas V1, V2, and V4. Such modulatory effects are both common, affecting 85% of cells, and strong, frequently producing changes of mean firing rate by a factor of 10. The prevalence of neurons in area V4 showing a preference for near distances may be indicative of the involvement of this area in close scrutiny during object recognition. We propose that eye-position signals can be exploited by visual cortex as classical conditioning stimuli, enabling the perceptual learning of systematic relationships between point of regard and the structure of the visual environment.  相似文献   

16.
Haynes JD  Rees G 《Current biology : CB》2005,15(14):1301-1307
Can the rapid stream of conscious experience be predicted from brain activity alone? Recently, spatial patterns of activity in visual cortex have been successfully used to predict feature-specific stimulus representations for both visible and invisible stimuli. However, because these studies examined only the prediction of static and unchanging perceptual states during extended periods of stimulation, it remains unclear whether activity in early visual cortex can also predict the rapidly and spontaneously changing stream of consciousness. Here, we used binocular rivalry to induce frequent spontaneous and stochastic changes in conscious experience without any corresponding changes in sensory stimulation, while measuring brain activity with fMRI. Using information that was present in the multivariate pattern of responses to stimulus features, we could accurately predict, and therefore track, participants' conscious experience from the fMRI signal alone while it underwent many spontaneous changes. Prediction in primary visual cortex primarily reflected eye-based signals, whereas prediction in higher areas reflected the color of the percept. Furthermore, accurate prediction during binocular rivalry could be established with signals recorded during stable monocular viewing, showing that prediction generalized across viewing conditions and did not require or rely on motor responses. It is therefore possible to predict the dynamically changing time course of subjective experience with only brain activity.  相似文献   

17.
Binocular rivalry is a fascinating perceptual phenomenon that has been characterized extensively at the psychophysical level. However, the underlying neural mechanism remains poorly understood. In particular, the role of the early visual pathway remains controversial. In this study, we used voltage-sensitive dye imaging to measure the spatiotemporal activity patterns in cat area 18 evoked by dichoptic orthogonal grating stimuli. We found that after several seconds of monocular stimulation with an oriented grating, an orthogonal stimulus to the other eye evoked a reversal of the cortical response pattern, which may contribute to flash suppression in perception. Furthermore, after several seconds of rival binocular stimulation with unequal contrasts, transient increase in the contrast of the weak stimulus evoked a long-lasting cortical response. This transient-triggered response could contribute to the perceptual switch during binocular rivalry. Together, these results point to a significant contribution of early visual cortex to transient-triggered switch in perceptual dominance.  相似文献   

18.
Chatterjee S  Callaway EM 《Neuron》2002,35(6):1135-1146
The magnocellular visual pathway is believed to receive input from long (L) and middle (M), but not short (S), wavelength-sensitive cones. Recording from neurons in magnocellular layers of lateral geniculate nucleus (LGN) in macaque monkeys, we found that magnocellular neurons were unequivocally responsive to S cone-isolating stimuli. A quantitative analysis suggests that S cones provided about 10% of the input to these cells, on average, while L:M ratios were far more variable. S cone signals influenced responses with the same sign as L and M cone inputs (i.e., no color opponency). Magnocellular afferent recordings following inactivation of primary visual cortex demonstrated that S cone signals were feedforward in nature and did not arise from cortical feedback to LGN  相似文献   

19.
Adab HZ  Vogels R 《Current biology : CB》2011,21(19):1661-1666
Practice improves the performance in visual tasks, but mechanisms underlying this adult brain plasticity are unclear. Single-cell studies reported no [1], weak [2], or moderate [3, 4] perceptual learning-related changes in macaque visual areas V1 and V4, whereas none were found in middle temporal (MT) [5]. These conflicting results and modeling of human (e.g., [6, 7]) and monkey data [8] suggested that changes in the readout of visual cortical signals underlie perceptual learning, rather than changes in these signals. In the V4 learning studies, monkeys discriminated small differences in orientation, whereas in the MT study, the animals discriminated opponent motion directions. Analogous to the latter study, we trained monkeys to discriminate static orthogonal orientations masked by noise. V4 neurons showed robust increases in their capacity to discriminate the trained orientations during the course of the training. This effect was observed during discrimination and passive fixation but specifically for the trained orientations. The improvement in neural discrimination was due to decreased response variability and an increase of the difference between the mean responses for the two trained orientations. These findings demonstrate that perceptual learning in a coarse discrimination task indeed can change the response properties of a cortical sensory area.  相似文献   

20.
Every day we shift our gaze about 150.000 times mostly without noticing it. The direction of these gaze shifts are not random but directed by sensory information and internal factors. After each movement the eyes hold still for a brief moment so that visual information at the center of our gaze can be processed in detail. This means that visual information at the saccade target location is sufficient to accurately guide the gaze shift but yet is not sufficiently processed to be fully perceived. In this paper I will discuss the possible role of activity in the primary visual cortex (V1), in particular figure-ground activity, in oculo-motor behavior. Figure-ground activity occurs during the late response period of V1 neurons and correlates with perception. The strength of figure-ground responses predicts the direction and moment of saccadic eye movements. The superior colliculus, a gaze control center that integrates visual and motor signals, receives direct anatomical connections from V1. These projections may convey the perceptual information that is required for appropriate gaze shifts. In conclusion, figure-ground activity in V1 may act as an intermediate component linking visual and motor signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号