首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory effect of NK-104, a potent inhibitor of HMG-CoA reductase, on taxol metabolism was examined using radio-TLC. This method is described for in vitro measurement of taxol metabolites as an alternative to the commonly used HPLC assay. After incubation of 14C-taxol with human liver microsomes, the supernatants were developed using a solvent system consisting of toluene–acetone–formic acid (60:39:1, v/v) and quantified with a bioimaging analyzer. The described method provides a valuable tool for the simultaneous determination of unchanged taxol and its major metabolites. There was no inhibitory effect of NK-104 on CYP-mediated metabolism of taxol in human liver microsomes.  相似文献   

2.
Neutron capture therapy (NCT) is a targeted radiotherapy for cancer treatment. In this method, neutrons with a spectra/specific energy (depending on the type of agent used for NCT) are captured with an agent that has a high cross-section with these neutrons. There are some agents that have been proposed in NCT including 10B, 157Gd and 33S. Among these agents, only 10B is used in clinical trials. Application of 157Gd is limited to in-vivo and in-vitro research. In addition, 33S has been applied in the field of Monte Carlo simulation. In BNCT, the only two delivery agents which are presently applied in clinical trials are BPA and BSH, but other delivery systems are being developed for more effective treatment in NCT. Neutron sources used in NCT are fission reactors, accelerators, and 252Cf. Among these, fission reactors have the most application in NCT. So far, BNCT has been applied to treat various cancers including glioblastoma multiforme, malignant glioma, malignant meningioma, liver, head and neck, lung, colon, melanoma, thyroid, hepatic, gastrointestinal cancer, and extra-mammary Paget's disease. This paper aims to review physical, dosimetric and clinical aspects as well as delivery systems in NCT for various agents.  相似文献   

3.
Taxol production in suspension cultures of Taxus baccata   总被引:18,自引:0,他引:18  
The response of Taxus baccata (PC2) to basic manipulations of culture conditions is described. Suspension cultures of Taxus baccata (PC2) were maintained at 25°C on a modified B5 medium with two-week transfers. Under these conditions, no taxol® is formed. However, if the cells are left in the same medium for 7 or more additional days, taxol is produced and released (ca. 90%) into the extracellular medium. Levels as high as 13 mg 1–1 extracellular taxol were achieved in shake flask cultures and taxol was the primary taxane formed representing between 50 and 80% of total taxane in the medium. The cells are sensitive to changes in culture conditions and cultures cycle through periods of high (13 mg 1–1) and low (<0.1 mg 1–1) levels of taxol production during extended culture. Picloram was the most effective of the auxins tested with respect to cell growth but it suppressed taxol production. Addition of fructose to moderately-productive cultures (ca. 4 mg 1–1) improved taxol production, but cultures in a high producing state did not respond. Glucose suppressed taxane production. Two isoprenoids (geraniol and pinene) had a modest effect on taxol production when added to cultures at 10 mg 1–1.®|Taxol is a registered trademark of Bristol Meyer Squibb for paclitaxel  相似文献   

4.
Aims: To develop novel polypropylene composite materials with antimicrobial activity by adding different types of copper nanoparticles. Methods and Results: Copper metal (CuP) and copper oxide nanoparticles (CuOP) were embedded in a polypropylene (PP) matrix. These composites present strong antimicrobial behaviour against E. coli that depends on the contact time between the sample and the bacteria. After just 4 h of contact, these samples are able to kill more than 95% of the bacteria. CuOP fillers are much more effective eliminating bacteria than CuP fillers, showing that the antimicrobial property further depends on the type of copper particle. Cu2+ released from the bulk of the composite is responsible for this behaviour. Moreover, PP/CuOP composites present a higher release rate than PP/CuP composites in a short time, explaining the antimicrobial tendency. Conclusions: Polypropylene composites based on copper nanoparticles can kill E. coli bacteria depending on the release rate of Cu2+ from the bulk of the material. CuOP are more effective as antimicrobial filler than CuP. Significance and Impact of the Study: Our findings open up novel applications of these ion‐copper‐delivery plastic materials based on PP with embedded copper nanoparticles with great potential as antimicrobial agents.  相似文献   

5.
Taxol, a microtubule stabilizing agent, has been extensively investigated for its antitumor activity. The cytotoxic effect of taxol is generally attributed to its antimicrotubule activity and is believed to be cell cycle dependent. Herein, we report that taxol induces hyperphosphorylation and reorganization of the vimentin intermediate filament in 9L rat brain tumor cells, in concentration- and time-dependent manner. Phosphorylation of vimentin was maximum at 10−6 M of taxol treatment for 8 h and diminished at higher (10−5 M) concentration. Enhanced phosphorylation of vimentin was detectable at 2 h treatment with 10−6 M taxol and was maximum after 12 h of treatment. Taxol-induced phosphorylation of vimentin was largely abolished in cells pretreated with staurosporine and bisindolymaleimide but was unaffected by H-89, KT-5926, SB203580, genistein, and olomoucine. Thus, protein kinase C may be involved in this process. Hyperphosphorylation of vimentin was accompanied by rounding up of cells as revealed by scanning electron microscopy. Moreover, there was a concomitant reorganization of the vimentin intermediate filament in the taxol-treated cells, whereas the microtubules and the actin microfilaments were less affected. Taken together, our data demonstrate that taxol induces hyperphosphorylation of vimentin with concomitant reorganization of the vimentin intermediate filament and that this process may be mediated via a protein kinase C signaling pathway. J. Cell Biochem. 68:472–483, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
R. W. Seagull 《Protoplasma》1990,159(1):44-59
Summary The effects of various cytoskeletal disrupting agents (cholchicine, oryzalin, trifluralin, taxol, cytochalasins B and D) on microtubules, microfilaments and wall microfibril deposition were monitored in developing cotton fibers, using immunocytochemical and fluorescence techniques. Treatment with 10–4 M colchicine, 10–6 M trifluralin or 10–6 M oryzalin resulted in a reduction in the number of microtubules, however, the drug-stable microtubules still appear to influence wall deposition. Treatment with 10–5 M taxol increased the numbers of microtubules present within 15 minutes of application. New microtubules were aligned parallel to the existing ones, however, some evidence of random arrays was observed. Microtubules stabilized with taxol appeared to function in wall organization but do not undergo normal re-orientations during development. Microtubule disrupting agent had no detectable affect on the microfilament population. Exposure to either 4×10–5 M cytochalasin B or 2×10–6M cytochalasin D resulted in a disruption of microfilaments and a re-organization of microtubule arrays. Treatment with either cytochalasin caused a premature shift in the orientation of microtubules in young fibers, whereas in older fibers the microtubule arrays became randomly organized. These observations indicate that microtubule populations during interphase are heterogeneous, differing at least in their susceptibility to disruption by depolymerizing agents. Changes in microtubule orientation (induced by cytochalasin) indicate that microfilaments may be involved in regulating microtubule orientation during development.  相似文献   

7.
Copper is a toxic heavy metal widely used to microbial control especially in agriculture. Consequently, high concentrations of copper residues remain in soils selecting copper-resistant organisms. In vineyards, copper is routinely used for fungi control. This work was undertaken to study copper resistance by rhizosphere microorganisms from two plants (Avena sativa L. and Plantago lanceolata L.) common in vineyard soils. Eleven rhizosphere microorganisms were isolated, and four displayed high resistance to copper. The isolates were identified by 16S rRNA gene sequence analysis as Pseudomonas putida (A1), Stenotrophomonas maltophilia (A2) and Acinetobacter sp. (A6), isolated from Avena sativa rhizosphere, and Acinetobacter sp. (T5), isolated from Plantago lanceolata rhizosphere. The isolates displayed high copper resistance in the temperature range from 25°C to 35°C and pH in the range from 5.0 to 9.0. Pseudomonas putida A1 resisted as much as 1,000 mg L−1 of copper. The isolates showed similar behavior on copper removal from liquid medium, with a bioremoval rate of 30% at 500 mg L−1 after 24 h of growth. Speciation of copper revealed high copper biotransformation, reducing Cu(II) to Cu(I), capacity. Results indicate that our isolates are potential agents for copper bioremoval and bacterial stimulation of copper biosorption by Avena sativa and Plantago lanceolata.  相似文献   

8.
d ‐penicillamine‐capped cadmium telluride quantum dots (DPA‐capped CdTe QDs) were synthesized as the new fluorescent semiconductor nanocrystal in aqueous solution. Fourier transmission infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet‐visible and photoluminescence spectroscopy were used for characterization of the QDs. Based on the quenching effect of Cu2+ ions on the fluorescence intensity of DPA‐capped CdTe QDs, a new fluorometric sensor for copper(II) detection was developed that showed good linearity over the concentration range 5 × 10–9–3 × 10–6 m with the detection limit 0.4 × 10–9 m . Owing to the strong affinity of the DPA to copper(II), the sensor showed appropriate selectivity for copper(II) compared with conventional QDs. The DPA‐capped CdTe QDs was successfully applied for determination of Cu2+ concentration in river, well and tap waters with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Evidence linking copper and zinc to hypertension are limited and conflicting. Data from the National Health and Nutrition Examination Survey (NHANES) 2007–2014 were used. Zinc and copper intake from diet and supplements was assessed with 24-h dietary recall. Hypertension was defined as systolic blood pressure (SBP) ≥?140 mmHg/diastolic blood pressure (DBP) ≥?90 mmHg/treatment with hypertensive medications. In a sensitivity analysis, according to the 2017 American College of Cardiology and American Heart Association guideline, hypertension was also defined as SBP ≥?130 mmHg/DBP ≥?80 mmHg/treatment with hypertensive medications. A total of 17,811 adults (8430 men and 9381 women) were included. After adjustment for age, gender, body mass index (BMI), race, educational level, smoking status, family income, and total daily energy intake, the OR of hypertension for highest vs. lowest quartile intake of copper, zinc, and copper/zinc ratio was 1.11 (0.90–1.37), 1.11 (0.90–1.35), and 0.95 (0.81–1.11), respectively. In stratified analysis by BMI (<?25 kg/m2, 25–30 kg/m2, >?30 kg/m2), no significant association was found between hypertension and intakes of copper, zinc, and copper/zinc ratio (highest vs. lowest quartile) in multivariate analysis. In multivariate analysis, the OR of hypertension for highest vs. lowest quartile levels of serum copper, zinc, and copper/zinc ratio was 1.11 (0.61–2.04), 1.43 (0.84–2.44), and 0.68 (0.34–1.33), respectively. Similar results were found in the sensitivity analysis. Zinc and copper might be not independently associated with hypertension in US adults.  相似文献   

10.
The anti-cancer drug taxol binds to β-tubulin in assembled microtubules and causes cell cycle arrest in animal cells; in contrast, in fungi, the effect of taxol varies. For instance, the taxol-producer Pestalotiopsis microspora Ne32, an ascomycete, is resistant to taxol (IC50 greater than 11.7?μM), whereas Pythium ultimum, an oomycete, is sensitive to taxol (IC50 0.1?μM). In order to understand the differential fungal response to taxol, we isolated cDNAs encoding β-tubulin from both P. microspora and P. ultimum. The deduced amino acid sequence of β-tubulin from P. microspora is very similar to those from other Ascomycetes, many of which are resistant to taxol. The sequence of β-tubulin from P. ultimum is very similar to those from Oomycetes and non-fungal organisms, many of which are sensitive to taxol. To examine the interaction between taxol and fungal microtubules, binding studies were performed with fungal cells, using [3H]taxol. The labeled taxol was found to bind specifically to P. ultimum, but not to P. microspora. In addition, the amount of [3H]taxol specifically bound to P. ultimum was reduced by the microtubule-depolymerizing drug thiabendazole, in a dose-dependent manner. These results suggest efficient binding of taxol to microtubules in P. ultimum, but not in P. microspora, and are consistent with the differential taxol sensitivity of these two organisms. Finally a comparison of previously characterized taxol binding sites in various β-tubulin sequences showed that β-tubulins of taxol-sensitive organisms, including P. ultimum, contain Thr219, but β-tubulins of resistant organisms, including P. microspora, contain Asn or Gln at this position, suggesting an important role for residue 219 in the interaction between taxol and β-tubulin.  相似文献   

11.
Many plant‐derived agents are being used to treat cancer, including taxol, vinblastine, vincristine, or camptothecin and podophyllotoxin derivatives, among others. Plant biotechnology can provide a new tool for the production of anticancer agents but in spite of considerable efforts to produce vinblastine and vincristine in cell cultures and knowledge of the biosynthetic pathway of Catharanthus roseus alkaloids, the biotechnological production of taxol has only been achieved at an industrial level by companies such as Phyton Biotech and Cytoclonal Pharmaceutics. Podophyllotoxin was isolated as the active antitumor agent from the roots of Podophyllum species and more recently from the genus Linum and others. Etoposide, teniposide, and etophos are semi‐synthetic derivatives of podophyllotoxin and are used in the treatment of cancer. Biotechnological approaches, including the use of cell cultures, biotransformation, or metabolic engineering techniques to manipulate the biosynthetic pathway, represent an alternative for the production of podophyllotoxin and are discussed in this review.  相似文献   

12.
Two sets of experiments were done to quantify the effects of chronic copper exposure on natural peri‐ phyton in a nonpolluted calcareous river. The results of short‐term (up to 6 h exposure) experiments corroborated the significance of pH on copper toxicity. Copper toxicity increased when pH was reduced from 8.6 to 7.7, and this was related to the effect of pH on copper speciation (free copper concentration increased from 0.2% to 2.3% of total copper). Longer term experiments demonstrated that periphyton communities exposed to copper under pH variation (8.2–8.6) were already affected at 10 μg·L ? 1 (20–80 ng·L ? 1 Cu2 + ) after 12 days of exposure. Copper exposure caused stronger effects on structural (algal biomass and community structure) than on functional (photosynthetic efficiency) parameters of peri‐ phyton. Changes in community composition included the enhancement of some taxa (Gomphonema gracile), the inhibition of others (Fragilaria capucina and Phormidium sp.), and the appearance of filament malformations (Mougeotia sp.). The results of our study demonstrated that several weeks of exposure to copper (10–20 μg·L ? 1) were sufficient to cause chronic changes in the periphyton of oligotrophic calcareous rivers. This degree of copper pollution can be commonly found in the Mediterranean region as a result of agricultural practices and farming activities.  相似文献   

13.
Taxol is a highly functionalized anticancer drug widely used in hospitals and clinics. The leaf spot fungus, Phyllosticta dioscoreae was isolated from diseased leaves of Hibiscus rosa-sinensis and screened for extracellular production of taxol in M1D (Modified liquid medium) and PDB (Potato dextrose broth) medium for the first time. The fungus was identified by its morphological and conidial features in the culture growth. The presence of taxol in the fungal culture filtrate was confirmed by different spectroscopic and chromatographic analyses. The amount of taxol produced was quantified by HPLC. The maximum amount of taxol produced was found to be 298 μg/L in M1D medium. Production rate was 5.96 × 103 times faster than that found in culture broth of earlier reported fungus, Taxomyces andreanae. The extracted fungal taxol also showed strong cytotoxic activity in vitro in the cultures of human cancer cells tested by apoptotic assay. The results indicate that P. dioscoreae is an excellent source of taxol production, which suggests that the fungus has potential to undergo genetic engineering in order to improve its production level.  相似文献   

14.
Paclitaxel is a well-known cancer drug that functions as a mitotic inhibitor. This work focuses on a copper based crystal that encapsulates the pharmaceutical agent and serves as a drug delivery agent. A Copper10-Pacitaxil1 chloride (CU10PAC1) complex is synthesized and tested against the National Cancer Institute’s sixty cell line panel. The 10:1 ratio results in a crystal that was examined by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spec (MALDI-TOF-MS), Scanning Electron Microscopy (SEM) and Proton (1H) and Carbon (13C) Nuclear Magnetic Resonance (NMR). The potential attributes of a copper based crystal as an in vivo drug carrier for Paclitaxel are discussed.  相似文献   

15.
Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV–vis, FT-IR, 1H NMR, GC–MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles.  相似文献   

16.
The synthesis of three tetrapeptides, Gly-Pro-Gly-Tyr. Gly-Pro-Tyr-Gly. and Tyr-Pro-Gly-Gly, are described. All contain proline as the second amino acid subunit to act as a break point in metal complex formation.The proton and copper(II) complex formation constants have been measured at 22°C and l = 0.10 mol dm?3 (KNO3). The copper(II) complexes have also been studied spectrophotometrically over the pH range of 6–11 by absorption spectroscopy (800–200 nm), circular dichroism spectroscopy, and electron paramagnetic resonance spectroscopy. The experimental data have been combined to determine the complex species present as a function of pH and the coordination centers used.  相似文献   

17.
The behavior of complexing agents for the copper removal reaction was studied by the equilibrium dialysis method. In the copper removal reaction, complexing agents are divided into two types: those that are reducing agents and those that are not. Sodium cyanide and sodium thiosulfate are of the first type, and 8-hydroxyquinoline-5-sulfonic acid, 2,2′-bipyridyl, and picolinic acid are of the second type. From equilibrium dialysis with the first type of complexing agent, the apparent binding constant (pH 6.0) between cuprous ions and apotyrosinase was calculated to be 1015m?1. Similarly, the apparent binding constant (pH 6.0) between cupric ions and apo-tyrosinase was about 1013m?1, which was calculated from equilibrium dialysis with the second type of complexing agent. The apparent binding constant between cuprous ions and apo-tyrosinase was larger than that between cupric ions and apo-tyrosinase.  相似文献   

18.
The anti-cancer drug taxol binds to β-tubulin in assembled microtubules and causes cell cycle arrest in animal cells; in contrast, in fungi, the effect of taxol varies. For instance, the taxol-producer Pestalotiopsis microspora Ne32, an ascomycete, is resistant to taxol (IC50 greater than 11.7 μM), whereas Pythium ultimum, an oomycete, is sensitive to taxol (IC50 0.1 μM). In order to understand the differential fungal response to taxol, we isolated cDNAs encoding β-tubulin from both P. microspora and P. ultimum. The deduced amino acid sequence of β-tubulin from P. microspora is very similar to those from other Ascomycetes, many of which are resistant to taxol. The sequence of β-tubulin from P. ultimum is very similar to those from Oomycetes and non-fungal organisms, many of which are sensitive to taxol. To examine the interaction between taxol and fungal microtubules, binding studies were performed with fungal cells, using [3H]taxol. The labeled taxol was found to bind specifically to P. ultimum, but not to P. microspora. In addition, the amount of [3H]taxol specifically bound to P. ultimum was reduced by the microtubule-depolymerizing drug thiabendazole, in a dose-dependent manner. These results suggest efficient binding of taxol to microtubules in P. ultimum, but not in P. microspora, and are consistent with the differential taxol sensitivity of these two organisms. Finally a comparison of previously characterized taxol binding sites in various β-tubulin sequences showed that β-tubulins of taxol-sensitive organisms, including P. ultimum, contain Thr219, but β-tubulins of resistant organisms, including P. microspora, contain Asn or Gln at this position, suggesting an important role for residue 219 in the interaction between taxol and β-tubulin. Received: 16 March 1999 / Accepted: 21 August 1999  相似文献   

19.
Cervical cancer is a leading cause of cancer-related deaths among women in developing countries. Therefore, development of new chemotherapeutic agents is required. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. In this work, a copper chelator pregnenolone acetate nucleus-based tetrazole derivative (ligand-L) was synthesized and characterized by elemental analysis, ESI-MS, 1H NMR and 13C NMR. DNA binding ability of ligand-L was studied using UV–Vis and fluorescence spectroscopy. Fluorescence spectroscopy studies reveal that quenching constant of ligand-l-DNA and ligand-L-Cu(II) were found to be 7.4 × 103 M−1 and 8.8 × 103 M−1, respectively. In vitro toxicity of ligand-L was studied on human cervical cancer C33A cancer cells. Results showed that ligand-L exhibit significant cytotoxic activity against cervical cancer C33A cells with IC50 value 5.0 ± 1.8 µM. Further, it was found that ligand-L cytotoxicity is due to redox cycling of copper to generate ROS which leads to DNA damage and apoptosis. In conclusion, this is the report where we synthesized pregnenolone acetate-based tetrazole derivative against C33A cells that targets cellular copper to induce pro-oxidant death in cancer cells. These findings will provide significant insights into the development of new chemical molecules with better copper chelating and pro-oxidant properties against cancer cells.  相似文献   

20.
Phyllosticta tabernaemontanae, a leaf spot fungus isolated from the diseased leaves of Wrightia tinctoria, showed the production of taxol, an anticancer drug, on modified liquid medium (MID) and potato dextrose broth (PDB) medium in culture for the first time. The presence of taxol was confirmed by spectroscopic and chromatographic methods of analysis. The amount of taxol produced by this fungus was quantified using high performance liquid chromatography (HPLC). The maximum amount of taxol production was recorded in the fungus grown on MID medium (461 μg/L) followed by PDB medium (150 μg/L). The production rate was increased to 9.2 × 103 fold than that found in the culture broth of earlier reported fungus, Taxomyces andreanae. The results designate that P. tabernaemontanae is an excellent candidate for taxol production. The fungal taxol extracted also showed a strong cytotoxic activity in the in vitro culture of tested human cancer cells by apoptotic assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号