首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MicroRNAs (miRNAs), small noncoding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key regulatory molecules in chronic liver diseases, whose end stage is hepatic fibrosis, a major global health burden. Pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, what makes it necessary to establish a better understanding of the molecular mechanisms underlying its pathogenesis. In this context, we have recently shown that cyclooxygenase-2 (COX-2) expression in hepatocytes restricts activation of hepatic stellate cells (HSCs), a pivotal event in the initiation and progression of hepatic fibrosis. Here, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs on a mouse model of CCl4 and bile duct ligation (BDL)-induced liver fibrosis. Our results provide evidence that COX-2 represses miR-23a-5p and miR-28-5p expression in HSC. The decrease of miR-23a-5p and miR-28-5p expression promotes protection against fibrosis by decreasing the levels of pro-fibrogenic markers α-SMA and COL1A1 and increasing apoptosis of HSC. Moreover, we demonstrate that serum levels of miR-28-5p are decreased in patients with chronic liver disease. These results suggest a protective effect exerted by COX-2-derived prostanoids in the process of hepatofibrogenesis.  相似文献   

2.
3.
BackgroundHepatic fibrosis is considered integral to the progression of chronic liver diseases, as it leads to the development of cirrhosis and hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. The transforming growth factor-β1 (TGF-β1) and Yes-associated protein (YAP) pathways play a pivotal role in HSC activation, hepatic fibrosis and cirrhosis progression. Therefore, targeting the TGF-β/Smad and YAP signaling pathways is a promising strategy for antifibrotic therapy.PurposeThe present study investigated the protective effects of Physalin D (PD), a withanolide isolated from Physalis species (Solanaceae), against liver fibrosis and further elucidated the mechanisms involved in vitro and in vivo.Study design/methodsWe conducted a series of experiments using carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced fibrotic mice and cultured LX-2 cells. Serum markers of liver injury, and the morphology, histology and fibrosis of liver tissue were investigated. Western blot assays and quantitative real-time PCR were used to investigate the mechanisms underlying the antifibrotic effects of PD.ResultPD decreased TGF-β1-induced COL1A1 promoter activity. PD inhibited TGF-β1-induced expression of Collagen I and α-smooth muscle actin (α-SMA) in human hepatic stellate LX-2 cells. PD significantly ameliorated hepatic injury, including transaminase activities, histology, collagen deposition and α-SMA, in CCl4- or BDL-induced mice. Moreover, PD markedly decreased the expression of phosphorylated Smad2/3 in vitro and in vivo. Furthermore, PD significantly decreased YAP protein levels, and YAP knockdown did not further enhance the effects of PD, namely α-SMA inhibition, Collagen I expression and YAP target gene expression in LX-2 cells.ConclusionThese results clearly show that PD ameliorated experimental liver fibrosis by inhibiting the TGF-β/Smad and YAP signaling pathways, indicating that PD has the potential to effectively treat liver fibrosis.  相似文献   

4.
We investigated the mechanism and effects of sorafenib on hepatic stellate cell (HSC) viability and in the liver tumor microenvironment. The expression of α-smooth muscle actin (α-SMA) was measured immunocytochemically in the LX2 cells treated with differing concentrations of sorafenib. Changes in the platelet-derived growth factor (PDGF)-BB and tumor growth factor (TGF)-β1 concentrations were detected in the LX2 supernatant using an enzyme-linked immunosorbent assay (ELISA). Expressions of the extracellular signal-regulated kinase 1 (ERK1), ERK2, and Akt signaling pathways were measured using a western blot assay. The LX2 cells were cocultured with HepG2 cells for 24 h to observe their effects on HepG2 cell invasive ability. (1) After treatment with various concentrations of sorafenib for 12, 24, 36, or 48 h, MTT assay showed that the viability of the treated LX2 cells was lower than in the controls. (2) As sorafenib concentration and time of exposure increased, α-SMA expression became weaker in the treated cells. (3) The PDGF-BB and TGF-β1 concentrations decreased with higher concentration, and longer exposures under the same sorafenib concentration. (4) The ERK1, ERK2, and Akt expressions were identical between the treated and the control groups, but their phosphorylated expression decreased with increased concentrations of sorafenib. (5) The invasive ability of the HepG2 cells induced by the LX2 gradually decreased as sorafenib concentrations increased. Sorafenib suppressed α-SMA expression, inhibited PDGF-dependent signaling pathways in HSCs, downregulated the PDGF-BB and TGF-β1 expression in the HSCs supernatant, and restrained viability of the HSCs, resulting in suppressed proliferation and invasion in the HepG2 cells.  相似文献   

5.
6.

Liver fibrosis, with the characterization of progressive accumulation of extracellular matrix (ECM), is the common pathologic feature in the process of chronic liver disease. Hepatic stellate cells (HSCs) which are activated and differentiate into proliferative and contractile myofibroblasts are recognized as the main drivers of fibrosis. Obesity-related adipocytokine dysregulation is known to accelerate liver fibrosis progression, but the direct fibrogenic effect of mature adipocytes on HSCs has been rarely reported. Therefore, the purpose of this study was to explore the fibrogenic effect of adipocyte 3T3-L1 cells on hepatic stellate LX-2 cells. The results showed that incubating LX-2 cells with the supernatant of 3T3-L1 adipocytes triggered the expression of ECM related proteins, such as α-smooth muscle actin (α-SMA), type I collagen (CO-I), and activated TGF β/Smad2/3 signaling pathway in LX-2 cells. In addition, 3T3-L1 cells inhibited insulin sensitivity, activated endoplasmic reticulum stress and autophagy to promote the development of fibrosis. These results supported the notion that mature adipocytes can directly activate hepatic stellate cells, and the establishment of an in vitro model of adipocytes on HSCs provides an insight into screening of drugs for liver diseases, such as nonalcoholic fatty liver disease.

  相似文献   

7.
Liver fibrosis is the repair process of abnormal connective tissue hyperplasia after liver damage caused by different causes. Inhibition of PI3K/Akt signalling pathway can reduce the deposition of extracellular matrix, inhibit the proliferation of hepatic stellate cells (HSCs), and promote its apoptosis to achieve the purpose of therapy. This study aimed to investigate the effect of Idelalisib (PI3K inhibitor) on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. We used CCl4-induced liver fibrosis mouse model in vivo and TGF-β1-stimulated HSCs to evaluate the antifibrosis activity of Idelalisib. In vivo, Idelalisib significantly alleviated CCl4-induced liver damage, collagen deposition, and hydroxyproline accumulation in mice. Immunohistochemistry and Western blot results showed that Idelalisib could significantly inhibit the expressions of COL1 and α-SMA in a concentration-dependent manner. In cell experiments, Idelalisib significantly inhibited the expressions of COL1, SMA, and p-Smad3 in TGF-β-induced HSCs, thereby inhibiting HSC activation. Flow cytometry and Western blot results showed that Idelalisib significantly promoted TGFβ-induced apoptosis of HSCs after 48 h of administration, but had no significant effect after 24 h. Idelalisib promoted the apoptosis of activated HSCs by inhibiting the PI3K/Akt/FOXO3 signalling pathway. To further explore the mechanism by which Idelalisib inhibited PI3K, we predicted the miRNA targeting PI3K through the database and crossed it with the down-regulated miRNA reported in liver fibrosis mice in the past five years. Finally, we identified miR-124-3p and miR-143-3p. We then demonstrated that Idelalisib significantly promoted miR-124-3p and miR-142-3p in vitro and in vivo. Dual-luciferase report analysis showed that Idelalisib significantly inhibited luciferase activity but had no significant effect on the luc-MUT transfection assay. Finally, we demonstrated that Idelalisib reversed the effects of miR-124-3p inhibitor on the PI3K/Akt/FOXO3 asterisk pathway and caspase-3. Idelalisib has potential as a candidate drug for alleviating liver fibrosis.  相似文献   

8.

Background

Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease, the most common chronic liver disease in the U.S. Fibrosis, a common feature of NASH, results from the dysregulation of fibrogenesis in hepatic stellate cells (HSCs). In this study, we investigated whether astaxanthin (ASTX), a xanthophyll carotenoid, can inhibit fibrogenic effects of transforming growth factor β1 (TGFβ1), a key fibrogenic cytokine, in HSCs.

Methods

Reactive oxygen species (ROS) accumulation was measured in LX-2, an immortalized human HSC cell line. Quantitative realtime PCR, Western blot, immunocytochemical analysis, and in-cell Western blot were performed to determine mRNA and protein of fibrogenic genes, and the activation of Smad3 in TGFβ1-activated LX-2 cells and primary mouse HSCs.

Results

In LX-2 cells, ROS accumulation induced by tert-butyl hydrogen peroxide and TGFβ1 was abolished by ASTX. ASTX significantly decreased TGFβ1-induced α-smooth muscle actin (α-SMA) and procollagen type 1, alpha 1 (Col1A1) mRNA as well as α-SMA protein levels. Knockdown of Smad3 showed the significant role of Smad3 in the expression of α-SMA and Col1A1, but not TGFβ1, in LX-2 cells. ASTX attenuated TGFβ1-induced Smad3 phosphorylation and nuclear translocation with a concomitant inhibition of Smad3, Smad7, TGFβ receptor I (TβRI), and TβRII expression. The inhibitory effect of ASTX on HSC activation was confirmed in primary mouse HSCs as evidenced by decreased mRNA and protein levels of α-SMA during activation.

Conclusion

Taken together, ASTX exerted anti-fibrogenic effects by blocking TGFβ1-signaling, consequently inhibiting the activation of Smad3 pathway in HSCs.

General significance

This study suggests that ASTX may be used as a preventive/therapeutic agent to prevent hepatic fibrosis.  相似文献   

9.
A series of new cytisine derivatives with a unique endocyclic scaffold were synthesized and evaluated for their inhibitory effect on collagen α1 (I) (COL1A1) promotor in human LX2 cells, taking cytisine as the lead. Structure-activity relationship (SAR) revealed that introducing a 12N-benzyl substitution might significantly enhance the activity. Compound 5f exhibited a promising inhibitory potency against COL1A1 with an IC50 value of 12.8 μM in human LX2 cells, and an inspiring inhibition activity against COL1A1 on both mRNA and protein levels. It also effectively inhibited the expression of α smooth muscle actin (α-SMA), connective tissue growth factor (CTGA), matrix metalloprotein 2 (MMP-2), and transforming growth factor β1 (TGFβ1), indicating an extensive inhibitory effect against fibrogenetic proteins. In addition, compound 5f displayed reasonable PK and safety profiles. The primary mechanism study indicated that it might repress the hepatic fibrogenesis via PI3K/Akt/Smad signaling pathway. The results provided powerful information for further structure optimization, and compound 5f was selected as a novel anti-liver fibrosis agent for further investigation.  相似文献   

10.
As an outcome of chronic liver disease, liver fibrosis involves the activation of hepatic stellate cells (HSCs) caused by a variety of chronic liver injuries. It is important to explore approaches to inhibit the activation and proliferation of HSCs for the treatment of liver fibrosis. PLK1 is overexpressed in many human tumour cells and has become a popular drug target in tumour therapy. Therefore, further study of the function of PLK1 in the cell cycle is valid. In the present study, we found that PLK1 expression was elevated in primary HSCs isolated from CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. Knockdown of PLK1 inhibited α‐SMA and Col1α1 expression and reduced the activation of HSCs in CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. We further showed that inhibiting the expression of PLK1 reduced the proliferation of HSCs and promoted HSCs apoptosis in vivo and in vitro. Furthermore, we found that the Wnt/β‐catenin signalling pathway may be essential for PLK1‐mediated HSCs activation. Together, blocking PLK1 effectively suppressed liver fibrosis by inhibiting HSC activation, which may provide a new treatment strategy for liver fibrosis.  相似文献   

11.

Background

The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life''s cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders.

Aim

In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes.

Methods

LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors.

Results

Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2.

Conclusions

The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.  相似文献   

12.
MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3′UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of α-SMA, DDR2, FN1, ITGB1, and PDGFR-β, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.  相似文献   

13.
The endocannabinoid system (CS) has been implicated in the development of hepatic fibrosis such as schistosomiasis-associated liver fibrosis (SSLF). However, the mechanisms mediating the action of the CS in hepatic fibrosis are unclear. The present study hypothesized that Schistosoma J. infection upregulates cannabinoid receptor 1 (CB1) due to activation of NADPH oxidase leading to a fibrotic phenotype in hepatic stellate cells (HSCs). The SSLF model was developed by infecting mice with Schistosoma J. cercariae in the skin, and HSCs from control and infected mice were then isolated, cultured, and confirmed by analysis of HSC markers α-SMA and desmin. CB1 significantly increased in HSCs isolated from mice with SSLF, which was accompanied by a greater expression of fibrotic markers α-SMA, collagen I, and TIMP-1. CB1 upregulation and enhanced fibrotic changes were also observed in normal HSCs treated with soluble egg antigen (SEA) from Schistosoma J. Electron spin resonance (ESR) analysis further demonstrated that superoxide (O2) production was increased in infected HSCs or normal HSCs stimulated with SEA. Both Nox4 and Nox1 siRNA prevented SEA-induced upregulation of CB1, α-SMA, collagen I, and TIMP-1 by inhibition of O2 production, while CB1 siRNA blocked SEA-induced fibrotic changes without effect on O2 production in these HSCs. Taken together, these data suggest that the fibrotic activation of HSCs on Schistosoma J. infection or SEA stimulation is associated with NADPH oxidase-mediated redox regulation of CB1 expression, which may be a triggering mechanism for SSLF.  相似文献   

14.
Activation of the adiponectin (APN) signaling axis retards liver fibrosis. However, understanding of the role of AdipoR1 and AdipoR2 in mediating this response is still rudimentary. Here, we sought to elucidate the APN receptor responsible for limiting liver fibrosis by employing AdipoR1 and AdipoR2 knock-out mice in the carbon tetrachloride (CCl4) model of liver fibrosis. In addition, we knocked down receptor function in primary hepatic stellate cells (HSCs) in vitro. Following the development of fibrosis, AdipoR1 and AdipoR2 KO mice had no quantitative difference in fibrosis by Sirius red staining. However, AdipoR2 KO mice had an enhanced fibrotic signature with increased Col1-α1, TGFß-1, TIMP-1, IL-10, MMP-2 and MMP-9. Knockdown of AdipoR1 or AdipoR2 in HSCs followed by APN treatment demonstrated that AdipoR1 and AdipoR2 did not affect proliferation or TIMP-1 gene expression, while AdipoR2 modulated Col1-α1 and α-SMA gene expression, HSC migration, and AMPK activity. These finding suggest that AdipoR2 is the major APN receptor on HSCs responsible for mediating its anti-fibrotic effects.  相似文献   

15.
Duan YN  Qian HY  Qin YW  Zhu DD  He XX  Zhou Q  Yang YN  Bao J  Feng JR  Sun W  Chen JL 《Parasitology》2011,138(8):1003-1010
n order to investigate the dynamics of Septin4 (Sept4) expression and its function in the formation of fibrotic livers in mice infected with Schistosoma japonicum, we constructed the mouse model of S. japonicum egg-induced liver fibrosis for 24 weeks. Immunohistochemical staining, qRT-PCR and Western blot were used to detect the expression of Sept4 and α-smooth muscle actin (α-SMA). We found Sept4 localized in the perisinusoidal space where hepatic stellate cells (HSCs) distribute in the periphery of circumoval granulomas and the portal venule. The expression of Sept4 and α-SMA had a similar significant tendency of an up-regulation to a peak at 12 weeks post-infection (p.i.) followed by a down-regulation. At 24 weeks p.i. both were at a low level. These results suggest that Sept4 and α-SMA may interact together in HSCs. Based on this evidence, we hypothesize that Sept4 seems to be involved in the formation of inflammatory granulomata and subsequent liver fibrosis by regulating HSCs activation.  相似文献   

16.
MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR‐193a/b‐3p in concanavalin A (ConA)‐induced liver fibrosis in mice was evaluated. According to the results, the expression of miR‐193a/b‐3p was down‐regulated in liver tissues after exposure to ConA. Lentivirus‐mediated overexpression of miR‐193a/b‐3p reduced ConA‐induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA‐induced liver fibrosis was restrained by the up‐regulation of miR‐193a/b‐3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor‐β1 (TGF‐β1) and activin A in liver tissues. Furthermore, miR‐193a/b‐3p mimics suppressed the proliferation of human HSCs LX‐2 via inducing the apoptosis of LX‐2 cells and lowering the levels of cell cycle‐related proteins Cyclin D1, Cyclin E1, p‐Rb and CAPRIN1. Finally, TGF‐β1 and activin A‐mediated activation of LX‐2 cells was reversed by miR‐193a/b‐3p mimics via repressing COL1A1 and α‐SMA expression, and restraining the activation of TGF‐β/Smad2/3 signalling pathway. CAPRIN1 and TGF‐β2 were demonstrated to be the direct target genes of miR‐193a/b‐3p. We conclude that miR‐193a/b‐3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR‐193a‐3p and miR‐193b‐3p may be new therapeutic targets for liver fibrosis.  相似文献   

17.
YB1 is a negative regulator in liver fibrosis. We wondered whether SJYB1, a homologous protein of YB1 from Schistosoma japonicum, has an effect on liver fibrosis in vitro. Recombinant SJYB1 (rSJYB1) protein was expressed in a bacterial system and purified by Ni‐NTA His·Bind Resin. A human hepatic stellate cell line, the LX‐2 cell line, was cultured and treated with rSJYB1. The role of rSJYB1 on LX‐2 cells was then analysed by Western blot and luciferase assay. We succeeded in expressing and purifying SJYB1 in a bacterial system and the purified rSJYB1 could be recognized by S japonicum‐infected rabbit sera. Western bolt analysis showed that rSJYB1 inhibited the expression of collagen type I, but had little effect on α‐smooth muscle actin (α‐SMA). Further analysis revealed that rSJYB1 inhibited the activity of collagen α1 (I) (COL1A1) promoter and functioned at ?1592/?1176 region of COL1A1 promoter. Our data demonstrate that rSJYB1‐mediated anti‐fibrotic activity involves inhibiting the activity of COL1A1 promoter and subsequently suppressing the expression of collagen type I in hepatic stellate cells.  相似文献   

18.
Anti-fibrotic and organ protective effects of brain natriuretic peptide (BNP) have been reported. In this study, effects of BNP on liver fibrosis were examined in the carbon tetrachloride (CCl4)-induced liver fibrosis model using BNP-transgenic (Tg) and wild-type (WT) mice. Twice-a-week intraperitoneal injections of CCl4 for 8 weeks resulted in massive liver fibrosis, augmented transforming growth factor (TGF)-β1 and type I procollagen α1 chain (Col1a1) mRNA expression, and the hepatic stellate cell (HSC) activation in WT mice, all of which were significantly suppressed in Tg mice. These observations indicate that BNP inhibits liver fibrosis by attenuating the activation of HSCs.  相似文献   

19.
Adenosine is produced during cellular hypoxia and apoptosis, resulting in elevated tissue levels at sites of injury. Adenosine is also known to regulate a number of cellular responses to injury, but its role in hepatic stellate cell (HSC) biology and liver fibrosis is poorly understood. We tested the effect of adenosine on the cytosolic Ca2+ concentration, chemotaxis, and upregulation of activation markers in HSCs. We showed that adenosine did not induce an increase in the cytosolic Ca2+ concentration in LX-2 cells and, in addition, inhibited increases in the cytosolic Ca2+ concentration in response to ATP and PDGF. Using a Transwell system, we showed that adenosine strongly inhibited PDGF-induced HSC chemotaxis in a dose-dependent manner. This inhibition was mediated via the A(2a) receptor, was reversible, was reproduced by forskolin, and was blocked by the adenylate cyclase inhibitor 2,5-dideoxyadenosine. Adenosine also upregulated the production of TGF-beta and collagen I mRNA. In conclusion, adenosine reversibly inhibits Ca2+ fluxes and chemotaxis of HSCs and upregulates TGF-beta and collagen I mRNA. We propose that adenosine provides 1) a "stop" signal to HSCs when they reach sites of tissue injury with high adenosine concentrations and 2) stimulates transdifferentiation of HSCs by upregulating collagen and TGF-beta production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号