首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

2.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) has a high recurrence rate and poor prognosis. Hispolon, a polyphenolic compound with antiviral, antioxidant, and anticancer activities, is a potential chemotherapy agent. However, few studies have investigated the anti-cancer mechanism of hispolon in oral cancer. This present study used the cell viability assay, clonogenic assay, fluorescent nuclear staining, and flow cytometry assay to analyse the apoptosis-inducing effects of hispolon in OSCC cells. After hispolon treatment, the apoptotic initiators, cleaved caspase-3, −8, and − 9, were upregulated, whereas the cellular inhibitor of apoptosis protein-1 (cIAP1) was downregulated. Furthermore, a proteome profile analysis using a human apoptosis array revealed the overexpression of heme oxygenase-1 (HO-1) by hispolon, which was determined to be involved in caspase-dependent apoptosis. Moreover, cotreatment with hispolon and mitogen-activated protein kinase (MAPK) inhibitors revealed that hispolon induces apoptosis in OSCC cells through activation of the c-Jun N-terminal kinase (JNK) pathway and not the extracellular signal-regulated kinase (ERK) or p38 pathway. These findings indicate that hispolon may exert an anticancer effect on oral cancer cells by upregulating HO-1 and inducing caspase-dependent apoptosis by activating the JNK pathway.  相似文献   

4.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

5.
Urocortin 1 and Urocortin 2 induce macrophage apoptosis via CRFR2   总被引:6,自引:0,他引:6  
Macrophages undergo apoptosis as a mechanism of regulating their activation and the inflammatory reaction. Macrophages express the Corticotropin-Releasing Factor Receptor-2 (CRFR2) the endogenous agonists of which, the urocortins, are also present at the site of inflammation. We have found that urocortins induced macrophage apoptosis in a dose- and time-dependent manner via CRFR2. In contrast to lipopolysaccharide (LPS)-induced apoptosis, the pro-apoptosis pathway activated by urocortins involved the pro-apoptotic Bax and Bad proteins and not nitric oxide, JNK and p38MAPK characteristic of LPS. In conclusion, our data suggest that endogenous CRFR2 ligands exert an anti-inflammatory effect via induction of macrophage apoptosis.  相似文献   

6.
Serine/threonine phosphatase regulation of phosphorylation-mediated intracellular signaling controls a number of important processes in mammalian cells. In this study, we show that constitutively active protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase, is essential for T leukemia cell survival. Jurkat and CCRF-CEM T leukemia cells treated with the PP2A-selective inhibitor okadaic acid (OA) showed a dose- and time-dependent induction of apoptosis, as indicated by loss of mitochondrial transmembrane potential (delta psi(m)), cleavage-induced activation of caspase-3, -8, and -9, and DNA fragmentation. In addition, caspase-8 or caspase-9 inhibition with z-IETD-fmk or z-LEHD-fmk, respectively, largely prevented OA-induced apoptosis. Although OA treatment did not affect constitutive Bcl-2 expression, overexpression of Bcl-2 prevented both OA-induced DNA fragmentation and dissipation of delta psi(m). Furthermore, inhibition of caspase-3, -8, or -9 partially protected against OA-induced loss of delta psi(m). In addition, caspase-9 and caspase-3 inhibition largely prevented procaspase-3 and procaspase-8 cleavage, respectively, while caspase-8 inhibition partially interfered with procaspase-9 cleavage in OA-treated T leukemia cells. Thus, PP2A inhibition triggered the intrinsic pathway of apoptosis, which was enhanced by a mitochondrial feedback amplification loop. PP2A has also been implicated in the regulation of p38 mitogen-activated protein kinase (MAPK). Co-immunoprecipitation analysis revealed a physical association between the catalytic subunit of PP2A and p38 MAPK in T leukemia cells. Moreover, OA treatment caused p38 MAPK to be phosphorylated in a dose- and time-dependent fashion, indicating that PP2A prevented p38 MAPK activation. Although p38 MAPK activation usually promotes apoptosis, pharmacologic inhibition of p38 MAPK exacerbated OA-induced DNA fragmentation and loss of delta psi(m) in T leukemia cells, suggesting that, in this instance, the p38 MAPK signaling pathway promoted cell survival. Collectively, these findings indicate that PP2A and p38 MAPK have coordinate effects on signaling pathways that regulate the survival of T leukemia cells.  相似文献   

7.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

8.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

9.
Piperine is a major component of black pepper, Piper nigrum Linn, used widely in traditional medicine. In this study, we examined whether piperine could protect House Ear Institute-Organ of Corti 1 (HEI-OC1) cells against cisplatin-induced apoptosis through the induction of heme oxygenase (HO)-1 expression. Piperine (10-100 microM) induced the expression of HO-1 in dose- and time-dependent manners. Piperine also induced antioxidant response element-luciferase and translocated nuclear factor-E2-related factor-2 (Nrf2) to nucleus. Piperine activated the c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK) pathways, and the JNK pathway played an important role in piperine-induced HO-1 expression. Piperine protected the cells against cisplatin-induced apoptosis. The protective effect of piperine was abrogated by zinc protoporphyrin IX, an HO inhibitor, and antisense oligodeoxynucleotides against HO-1 gene. These results demonstrate that the expression of HO-1 by piperine is mediated by both JNK pathway and Nrf2, and the expression inhibits cisplatin-induced apoptosis in HEI-OC1 cells.  相似文献   

10.
Lee SH  Park SW  Pyo CW  Yoo NK  Kim J  Choi SY 《Biochimie》2009,91(1):102-108
The cell proliferation of p53-deficient Jurkat T cells is controlled after prolonged exposure to human lactoferrin (Lf). However, the molecular mechanism by which Lf influences these cellular responses remains unclear. In this study, we demonstrate that Lf-induced apoptosis in Jurkat T cells occurs in a dose- and time-dependent manner via the regulation of c-Jun N-terminal kinase (JNK) activity. Jurkat cells exposed to Lf for 1 day, especially at concentrations in excess of 500 microg/ml, showed typical apoptosis, as indicated by decreased cell viability and increased Annexin V binding. Our results also showed that Lf induced the activation of caspase 9 and caspase 3 activation, as demonstrated by our detection of cleaved caspases and PARP. Lf-induced apoptosis did not influence Bcl-2 expression via an ERK1/2 phosphorylation pathway, but was rather associated with the level of Bcl-2 phosphorylation. The treatment of cells with the specific JNK inhibitor SP600125, but not the p38 MAPK inhibitor SB203580, revealed that the JNK-Bcl-2 signaling cascade is required for Lf-induced apoptosis. When JNK activation was abolished by SP600125, no Bcl-2 phosphorylation was detected, and the Lf-treated Jurkat cells did not undergo cell death. These findings indicate that Lf functions as a biological mediator of apoptosis in the human leukemia Jurkat T-cell line, via the JNK-associated Bcl-2 signaling pathway.  相似文献   

11.
The cardiotoxicity of cyclosporine A (CsA) limits its clinical application in extensive and long-term therapies. Our group has shown that CsA induces myocardium cell apoptosis in vivo and increases calcium-sensing receptor (CaSR) expression. However, its molecular mechanism remains unknown. The purpose of this study was to determine whether CaSR plays an essential role in CsA-induced apoptosis in H9c2 cells and to investigate the role of the mitogen-activated protein kinase (MAPK) signaling cascade in this process. H9c2 cells were treated with CsA in a dose-dependent manner, and decreased Bcl-2 expression, increased Bax expression, and caspase-3 activation were observed. In a time-dependent manner, CsA increased CaSR expression, activated the extracellularly regulated kinase (ERK) and p38 MAPK pathways, and inactivated the c-Jun N-terminal kinase (JNK) MAPK signaling pathway. When H9c2 cardiomyoblast cells pretreated with gadolinium chloride (GdCl(3)), a CaSR activator, were treated with CsA, decreased phosphorylation of ERK1/2, increased phosphorylation of p38, decreased Bcl-2 expression, increased Bax expression, and activated caspase-3 were observed. Cells pretreated with the CaSR inhibitor NPS2390 inhibited this process. Furthermore, the MEK1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580 markedly blocked the effect of CsA on cell apoptosis, apoptotic-related protein expression, and caspase-3 activation. These findings showed that CsA induced apoptosis in H9c2 cells in vitro, and CaSR mediated the degradation of ERK MAPK and the upregulation of the p38 MAPK pathway involved in CsA-induced H9c2 cardiomyoblast cell apoptosis.  相似文献   

12.
13.
It has been widely accepted that astrocytes, play a role in regulating almost every physiological system. In the present study, we investigated the role of particulate matter (PM) in regulating activation of astrocytes. The glial cell strain C6 was cloned from a rat glioma which was induced by N-nitrosomethylurea. The C6 cells were plated at a density of 5 × 106 cells/10 cm diameter dish and incubated with different concentrations (0, 12, 25, 50, 100, 200, and 400 μg/mL) of PM for 24 h and different time (0, 1, 3, 6, 8,12, and 24 h) with 100 μg/mL at 37 °C. The study revealed that PM stimulated the expression of inducible nitric oxide synthase (iNOS) as well as the production of IL-1β in a dose- and time-dependent manner. Furthermore, activation of JAK2/STAT3 and p38/JNK/ERK MAPKs was found in astrocytes following PM treatment. Blockage of JAK and p38/JNK/ERK MAPKs with their specific inhibitors, AG490, SB202190, SP600125 and U0126 significantly reduced PM-induced iNOS expression and IL-1β production. In addition, it was demonstrated that inhibition of p38, JNK and JAK prevented STAT3 tyrosine phosphorylation induced by PM, while blocking ERK did not. MAPKs (p38 and JNK) could regulate tyrosine STAT3 phosphorylation, which suggested that the JAK2/STAT3 pathway might be the downstream of p38/JNK MAPK pathways.  相似文献   

14.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

15.
Apoptosis is a highly coordinated or programmed cell suicide mechanism in eukaryotes. Histone modification is associated with nuclear events in apoptotic cells. Specifically H2B phosphorylation at serine 14 (Ser14) catalyzed by Mst1 kinase has been linked to chromatin condensation during apoptosis. We report that activation of MAPKs (ERK1/2, JNK1/2 and p38) together with Mst1 and caspase-3 is required for phosphorylation of H2B (Ser14) during ultraviolet B light (UVB)-induced apoptosis. UVB can trigger activation of MAPKs and induce H2B phosphorylation at Ser14 but not acetylation in a time-dependent manner. Inhibition of ERK1/2, JNK1/2 or p38 activity blocked H2B phosphorylation (Ser14). Furthermore, caspase-3 was activated by UVB to regulate Mst1 activity, which phosphorylates H2B at Ser14, leading to chromatin condensation. Full inhibition of caspase-3 activity reduced Mst1 activation and partially inhibited H2B phosphorylation (Ser14), but ERK1/2, JNK1/2 and p38 activities were not affected. Taken together, these data revealed that H2B phosphorylation is regulated by both MAPKs and caspase-3/Mst1 pathways during UVB-induced apoptosis.  相似文献   

16.
This work shows that ATP activates JNK1, but not JNK2, in rat osteoblasts and ROS-A 17/2.8 osteoblast-like cells. In ROS-A 17/2.8 cells ATP induced JNK1 phosphorylation in a dose- and time-dependent manner. JNK1 phosphorylation also increased after osteoblast stimulation with ATPγS and UTP, but not with ADPβS. RT-PCR studies supported the expression of P2Y2 receptor subtype. ATP-induced JNK1 activation was reduced by PI-PLC, IP3 receptor, PKC and Src inhibitors and by gadolinium, nifedipine and verapamil or a Ca2+-free medium. ERK 1/2 or p38 MAPK inhibitors diminished JNK1 activation by ATP, suggesting a cross-talk between these pathways. ATP stimulated osteoblast-like cell proliferation consistent with the participation of P2Y2 receptors. These results show that P2Y2 receptor stimulation by ATP induces JNK1 phosphorylation in ROS-A 17/2.8 cells in a way dependent on PI-PLC/IP3/intracellular Ca2+ release and Ca2+ influx through stress activated and L-type voltage-dependent calcium channels and involves PKC and Src kinases.  相似文献   

17.
18.
In vivo and in vitro studies indicate that 4-hydroxy-2-nonenal (4-HNE), generated by cellular lipid peroxidation or after oxidative stress, affects endothelial permeability and vascular tone. However, the mechanism(s) of 4-HNE-induced endothelial barrier function is not well defined. Here we provide evidence for the first time on the involvement of mitogen-activated protein kinases (MAPKs) in 4-HNE-mediated actin stress fiber formation and barrier function in lung endothelial cells. Treatment of bovine lung microvascular endothelial cells with hydrogen peroxide (H(2)O(2)), as a model oxidant, resulted in accumulation of 4-HNE as evidenced by the formation of 4-HNE-Michael protein adducts. Exposure of cells to 4-HNE, in a dose- and time-dependent manner, decreased endothelial cell permeability measured as transendothelial electrical resistance. The 4-HNE-induced permeability changes were not because of cytotoxicity or endothelial cell apoptosis, which occurred after prolonged treatment and at higher concentrations of 4-HNE. 4-HNE-induced changes in transendothelial electrical resistance were calcium independent, as 4-HNE did not alter intracellular free calcium levels as compared with H(2)O(2) or diperoxovanadate. Stimulation of quiescent cells with 4-HNE (1-100 microm) resulted in phosphorylation of ERK1/2, JNK, and p38 MAPKs, and actin cytoskeleton remodeling. Furthermore, pretreatment of bovine lung microvascular endothelial cells with PD 98059 (25 microm), an inhibitor of MEK1/2, or SP 600125 (25 microm), an inhibitor of JNK, or SB 202190 (25 microm), an inhibitor of p38 MAPK, partially attenuated 4-HNE-mediated barrier function and cytoskeletal remodeling. These results suggest that the activation of ERK, JNK, and p38 MAP kinases is involved in 4-HNE-mediated actin remodeling and endothelial barrier function.  相似文献   

19.
20.
A clear association between obesity and heart failure exists and a significant role for leptin, the product of the obese gene, has been suggested. One aspect of myocardial remodeling which characterizes heart failure is a disruption in the balance of extracellular matrix synthesis and degradation. Here we investigated the effects of leptin on matrix metalloproteinase (MMP) activity, tissue inhibitor of metalloproteinase (TIMP) expression, as well as collagen synthesis in HL-1 cardiac muscle cells. Gelatin zymographic analysis of MMP activity in conditioned media showed that leptin enhanced MMP-2 activity in a dose- and time-dependent manner. Leptin is known to stimulate phosphorylation of p38 MAPK in cardiac cells and utilization of the p38 MAPK inhibitor, SB203580, demonstrated that this kinase also plays a role in regulating several extracellular matrix components, such that inhibition of p38 MAPK signaling prevented the leptin-induced increase in MMP-2 activation. We also observed that leptin enhanced collagen synthesis determined by both proline incorporation and picrosirius red staining of conditioned media. Pro-collagen type-I and pro-collagen type-III expression, measured by real-time PCR and Western blotting were also increased by leptin, effects which were again attenuated by SB203580. In summary, these results demonstrate the potential for leptin to play a role in mediating myocardial ECM remodeling and that the p38 MAPK pathway plays an important role in mediating these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号