首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All vertebrate cells regulate their cell volume by activating chloride channels of unknown molecular identity, thereby activating regulatory volume decrease. We show that the Ca2+-activated Cl channel TMEM16A together with other TMEM16 proteins are activated by cell swelling through an autocrine mechanism that involves ATP release and binding to purinergic P2Y2 receptors. TMEM16A channels are activated by ATP through an increase in intracellular Ca2+ and a Ca2+-independent mechanism engaging extracellular-regulated protein kinases (ERK1/2). The ability of epithelial cells to activate a Cl conductance upon cell swelling, and to decrease their cell volume (regulatory volume decrease) was dependent on TMEM16 proteins. Activation of ICl,swell was reduced in the colonic epithelium and in salivary acinar cells from mice lacking expression of TMEM16A. Thus TMEM16 proteins appear to be a crucial component of epithelial volume-regulated Cl channels and may also have a function during proliferation and apoptotic cell death.Regulation of cell volume is fundamental to all cells, particularly during cell growth and division. External hypotonicity leads to cell swelling and subsequent activation of volume-regulated chloride and potassium channels, to release intracellular ions and to re-shrink the cells, a process termed regulatory volume decrease (RVD)3 (1). Volume-regulated chloride currents (ICl,swell) have dual functions during cell proliferation as well as apoptotic volume decrease (AVD), preceding apoptotic cell death (2). Although ICl,swell is activated in swollen cells to induce RVD, AVD takes place under normotonic conditions to shrink cells (3, 4). Early work suggested intracellular Ca2+ as an important mediator for activation of ICl,swell and volume-regulated K+ channels (5), whereas subsequent studies only found a permissive role of Ca2+ for activation of ICl,swell (6), reviewed in Ref. 1. In addition, a plethora of factors and signaling pathways have been implicated in activation of ICl,swell, making cell volume regulation an extremely complex process (reviewed in Refs. 1, 3, and 7). These factors include intracellular ATP, the cytoskeleton, phospholipase A2-dependent pathways, and protein kinases such as extracellular-regulated kinase ERK1/2 (reviewed in Refs. 1 and 7). Previous approaches in identifying swelling-activated Cl channels have been unsuccessful or have produced controversial data. Thus none of the previous candidates such as pICln, the multidrug resistance protein, or ClC-3 are generally accepted to operate as volume-regulated Cl channels (reviewed in Refs. 8 and 9). Notably, the cystic fibrosis transmembrane conductance regulator (CFTR) had been shown in earlier studies to influence ICl,swell and volume regulation (1012). The variable properties of ICl,swell suggest that several gene products may affect ICl,swell in different cell types.The TMEM16 transmembrane protein family consists of 10 different proteins with numerous splice variants that contain 8–9 transmembrane domains and have predicted intracellular N- and C-terminal tails (13, 1618). TMEM16A (also called ANO1) is required for normal development of the murine trachea (14) and is associated with different types of tumors, dysplasia, and nonsyndromic hearing impairment (13, 15). TMEM16A has been identified as a subunit of Ca2+-activated Cl channels that are expressed in epithelial and non-epithelial tissues (1618). Interestingly, members of the TMEM16 family have been suggested to play a role in osmotolerance in Saccharomyces cerevisiae (19). Here we show that TMEM16 proteins also contribute to ICl,swell and regulatory volume decrease.  相似文献   

2.
3.
4.
Electron microscopic study of the surface and of ultrathin sections of the olfactory lining performed in seven species of freshwater fish of the Acipenserformes, Salmoniformes, Cypriniformes, and Perciformes orders. The cells that contain numerous mitochondria and well-developed tubular reticulum and have a peculiar shape of the apical surface were found in the olfactory epithelium of all the fish studied. They were identified as chloride cells, i.e., cells with a clearly seen ion-transporting specialization. The excretory character of their activity and a possible participation in maintaining a certain and constant ion composition of the mucus on the olfactory epithelium surface is discussed.  相似文献   

5.
主要嗅觉表皮(main olfactory epithelium, MOE)是哺乳动物感知气味分子的主要嗅觉器官。在MOE组织内,大多数嗅觉神经元通过cAMP信号传导通路感知气味信息。作为嗅觉cAMP信号通路的主要成员之一,腺苷酸环化酶3(adenylyl cyclase 3, ac3)基因敲除小鼠嗅觉探测功能丧失。除cAMP信号传导通路外,MOE内AC3相关因子AC2和AC4,以及肌醇1,4,5-三磷酸(inositol 1,4,5-trisphosphate,IP3)信号通路和Sonic Hedgehog(Shh)信号通路均有表达。然而,敲除ac3是否会对ac2和ac4以及IP3和Shh信号通路成员产生影响,尚不清楚。本文以AC3缺失(AC3-/-)及其野生型小鼠(AC3+/+)MOE为材料,采用实时荧光定量PCR(qRT-PCR)和免疫荧光组织化学方法,发现AC3缺失后,MOE内的ac2和ac4,以及IP3信号通路中的IP3受体ip3r1及钙调蛋白calm1和calm2表达水平均明显降低。Shh信号通路中的受体patched(ptch)与smoothened(smo)、以及核转录因子gli1与gli2的表达也受到了影响。总之,AC3基因缺失不但导致小鼠MOE组织中cAMP信号通路受损,同时AC3相关因子,IP3信号通路和Shh信号通路的传导也受到抑制。本文对于阐明AC3基因敲除小鼠嗅觉丧失的原因及其嗅觉探测机制具有重要启示作用。  相似文献   

6.
Calcium‐activated chloride channels are involved in several physiological processes including olfactory perception. TMEM16A and TMEM16B, members of the transmembrane protein 16 family (TMEM16), are responsible for calcium‐activated chloride currents in several cells. Both are present in the olfactory epithelium of adult mice, but little is known about their expression during embryonic development. Using immunohistochemistry we studied their expression in the mouse olfactory epithelium at various stages of prenatal development from embryonic day (E) 12.5 to E18.5 as well as in postnatal mice. At E12.5, TMEM16A immunoreactivity was present at the apical surface of the entire olfactory epithelium, but from E16.5 became restricted to a region near the transition zone with the respiratory epithelium, where localized at the apical part of supporting cells and in their microvilli. In contrast, TMEM16B immunoreactivity was present at E14.5 at the apical surface of the entire olfactory epithelium, increased in subsequent days, and localized to the cilia of mature olfactory sensory neurons. These data suggest different functional roles for TMEM16A and TMEM16B in the developing as well as in the postnatal olfactory epithelium. The presence of TMEM16A at the apical part and in microvilli of supporting cells is consistent with a role in the regulation of the chloride ionic composition of the mucus covering the apical surface of the olfactory epithelium, whereas the localization of TMEM16B to the cilia of mature olfactory sensory neurons is consistent with a role in olfactory signal transduction. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 657–675, 2014  相似文献   

7.
Cholera toxin (CT) induces severe diarrhea in humans but acts as an adjuvant to enhance immune responses to vaccines when administered orally. Nasally administered CT also acts as an adjuvant, but CT and CT derivatives, including the B subunit of CT (CTB), are taken up from the olfactory epithelium and transported to the olfactory bulbs and therefore may be toxic to the central nervous system. To assess the toxicity, we investigated whether nasally administered CT or CT derivatives impair the olfactory system. In mice, nasal administration of CT, but not CTB or a non-toxic CT derivative, reduced the expression of olfactory marker protein (OMP) in the olfactory epithelium and olfactory bulbs and impaired odor responses, as determined with behavioral tests and optical imaging. Thus, nasally administered CT, like orally administered CT, is toxic and damages the olfactory system in mice. However, CTB and a non-toxic CT derivative, do not damage the olfactory system. The optical imaging we used here will be useful for assessing the safety of nasal vaccines and adjuvants during their development for human use and CT can be used as a positive control in this test.  相似文献   

8.
Larsson C  Ng CE 《Radiation research》2003,160(2):205-209
The mechanism of thermal radiosensitization is related to the inhibition of repair of radiation-induced DNA damage by heat. Due to the interaction of the gene p21/WAF1/CIP1 (now known as CDKN1A) with a variety of DNA repair proteins, its involvement in thermal radiosensitization was investigated. Two isogenetic human colorectal cancer cell lines with wild-type TP53 status were used. The 80S4 cell line was deficient in CDKN1A and the HCT116 cells were CDKN1A proficient. Both cell lines were significantly more sensitive to 44 degrees C than 42 degrees C heating (P < 0.01), and both cell lines expressed thermotolerance for heating times longer than about 2 h at the lower temperature. There were no significant differences in the X-radiation response of the two cell lines. Further, the two cell lines displayed similar cell survival levels after hyperthermia given before or after X radiation for both hyperthermia temperatures. Comparison of thermal enhancement ratios confirmed that there was no difference in the amount of thermal radiosensitization induced in the two cell lines. The induction and subsequent repair of DNA double-strand breaks, as measured by clamped homogeneous gel electrophoresis, was also the same in both cell lines. These findings strongly suggest that the gene CDKN1A does not play an important role in the expression of thermal radiosensitization.  相似文献   

9.
10.
There is a clear link between epilepsy and depression. Clinical data demonstrate a 30–35% lifetime prevalence of depression in patients with epilepsy, and patients diagnosed with depression have a three to sevenfold higher risk of developing epilepsy. Traditional epilepsy models partially replicate the clinical observations, with the demonstration of depressive traits in epileptic animals. Studies assessing pro-epileptogenic changes in models of depression, however, are more limited. Here, we examined whether a traditional rodent depression model—bilateral olfactory bulbectomy—predisposes the animals towards the development of epilepsy. Past studies have demonstrated increased neuronal excitability after bulbectomy, but continuous seizure monitoring had not been conducted. For the present study, we monitored control and bulbectomized animals by video-EEG 24/7 for approximately two weeks following the surgery to determine whether they develop spontaneous seizures. All seven bulbectomized mice exhibited seizures during the monitoring period. Seizures began about one week after surgery, and occurred in clusters with severity increasing over the monitoring period. These results suggest that olfactory bulbectomy could be a useful model of TBI-induced epilepsy, with advantages of relatively rapid seizure onset and a high number of individuals developing the disease. The model may also be useful for investigating the mechanisms underlying the bidirectional relationship between epilepsy and depression.  相似文献   

11.
The Ca2+-activated Cl? channel ANO1 is widely expressed in epithelial cells, and ANO1 upregulation is implicated in the oncogenesis of many epithelium-originated cancers. However, whether ANO1 plays a causal role in the tumorigenesis of colorectal cancer remains largely unknown. Here, we show that ANO1 channel protein is upregulated in human colorectal cancer tissue samples and its upregulation is correlated with the TNM staging, histological type, pathological differentiation and poor prognosis. Knockdown or pharmacological inhibition of ANO1 suppresses colorectal cancer cell proliferation and induces cell apoptosis. Furthermore, ANO1 knockdown inhibits the growth of subcutaneous xenograft tumors implanted with colorectal cancer HT-29 cells in nude mice. Mechanically, knockdown of endogenous ANO1 inactivates the Wnt/β-catenin signaling through downregulating critical components, such as Frizzled protein 1, β-catenin and upregulating GSK3β. Taken together, our results demonstrate that ANO1 upregulation is involved in the tumorigenesis of colorectal cancer, and inhibition of ANO1 upregulation or inactivating downstream Wnt/β-catenin signaling may have therapeutic potential for colorectal cancer.  相似文献   

12.
Electrical activity and histological changes were studied in the degenerating olfactory epithelium of the bullfrog after the olfactory nerve had been sectioned. After nerve section, the electrical responses to odors disappeared in the olfactory epithelium in 8 days in the summer, in 11 days in the early autumn, and in 16 days in the early winter. In the degenerating olfactory epithelium a striking decrease in the number of olfactory cells was found, but not of supporting cells. The ratio of the number of olfactory cells to that of supporting cells was found to decrease from 5 or 6 to below 2 after the nerve section. At a ratio below 2, the electrical responses to odor disappeared. The histological changes in the bullfrog are compared with those in the mouse and rabbit. The localization of the olfactory pigment and the electrical activity of the supporting cell are discussed. It was concluded that all three types of responses to odors originate from the activity of the olfactory cell.  相似文献   

13.
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers.In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.  相似文献   

14.
The calcium-activated chloride channel TMEM16A (ANO1) supports the passive movement of chloride ions across membranes and controls critical cell functions. Here we study the block of wild-type and mutant TMEM16A channels expressed in HEK293 cells by oleic acid, a monounsaturated omega-9 fatty acid beneficial for cardiovascular health. We found that oleic acid irreversibly blocks TMEM16A in a dose- and voltage-dependent manner at low intracellular Ca2+. We tested whether oleic acid interacted with the TMEM16A pore, varying the permeant anion concentration and mutating pore residues. Lowering the permeating anion concentration in the intracellular side did nothing but the blockade was intensified by increasing the anion concentration in the extracellular side. However, the blockade of the pore mutants E633A and I641A was voltage-independent, and the I641A IC50, a mutant with the inner hydrophobic gate in disarray, increased 16-fold. Furthermore, the uncharged methyl-oleate blocked 20–24% of the wild-type and I641A channels regardless of voltage. Our findings suggest that oleic acid inhibits TMEM16A by an allosteric mechanism after the electric field drives oleic acid's charged moiety inside the pore. Block of TMEM16A might be why oleic acid has a beneficial impact on the cardiovascular system.  相似文献   

15.
We previously reported that TREK-1 gating by internal pH and pressure occurs close to or within the selectivity filter. These conclusions were based upon kinetic measurements of high-affinity block by quaternary ammonium (QA) ions that appeared to exhibit state-independent accessibility to their binding site within the pore. Intriguingly, recent crystal structures of two related K2P potassium channels were also both found to be open at the helix bundle crossing. However, this did not exclude the possibility of gating at the bundle crossing and it was suggested that side-fenestrations within these structures might allow state-independent access of QA ions to their binding site. In this addendum to our original study we demonstrate that even hydrophobic QA ions do not access the TREK-1 pore via these fenestrations. Furthermore, by using a chemically reactive QA ion immobilized within the pore via covalent cysteine modification we provide additional evidence that the QA binding site remains accessible to the cytoplasm in the closed state. These results support models of K2P channel gating which occur close to or within the selectivity filter and do not involve closure at the helix bundle crossing.  相似文献   

16.
17.
The development of blood vessels and growth of different tissue compartments in the avian nasal mucosa were studied in chickens from hatching to 5 months of age. The vascularity of the rostral and middle nasal conchae increased about 4-fold, while there was a progressive decrease in the relative size of the epithelium and connective tissue compartments, during the maturation period. Arteriovenous anastomoses (AVAs) were present already at hatching and their density increased 3-fold during the second week of posthatching development. The seromucous glands form by a process of invagination of the epithelium, which occurs predominantly during the first week after hatching. The glands continue to grow in size and an increasing fraction of the cells becomes mucous-secreting. The observations are discussed in relation to the role of the nasal mucosa in temperature regulation and conditioning of the inhaled air.  相似文献   

18.
TMEM16A (ANO1) functions as a calcium-activated chloride channel (CaCC). We developed pharmacological tools to investigate the contribution of TMEM16A to CaCC conductance in human airway and intestinal epithelial cells. A screen of ~110,000 compounds revealed four novel chemical classes of small molecule TMEM16A inhibitors that fully blocked TMEM16A chloride current with an IC(50) < 10 μM, without interfering with calcium signaling. Following structure-activity analysis, the most potent inhibitor, an aminophenylthiazole (T16A(inh)-A01), had an IC(50) of ~1 μM. Two distinct types of inhibitors were identified. Some compounds, such as tannic acid and the arylaminothiophene CaCC(inh)-A01, fully inhibited CaCC current in human bronchial and intestinal cells. Other compounds, including T16A(inh)-A01 and digallic acid, inhibited total CaCC current in these cells poorly, but blocked mainly an initial, agonist-stimulated transient chloride current. TMEM16A RNAi knockdown also inhibited mainly the transient chloride current. In contrast to the airway and intestinal cells, all TMEM16A inhibitors fully blocked CaCC current in salivary gland cells. We conclude that TMEM16A carries nearly all CaCC current in salivary gland epithelium, but is a minor contributor to total CaCC current in airway and intestinal epithelia. The small molecule inhibitors identified here permit pharmacological dissection of TMEM16A/CaCC function and are potential development candidates for drug therapy of hypertension, pain, diarrhea, and excessive mucus production.  相似文献   

19.
Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.  相似文献   

20.
Four cell types are present in the olfactory epithelium of Neoceratodus forsteri, i.e., olfactory receptor cells, supporting cells, non-sensory ciliated cells, and basal cells. Only microvilli and no cilia were observed on the receptor cells. The neurotubules pass out into these microvilli. Conspicuous arrays of agranular endoplasmic reticulum are present in the nuclear region of the receptor cells. The supporting cells are provided with microvilli. These cells may be secretory. The non-sensory ciliated cells produce secretory granules containing acid mucopolysaccharides. A discontinuous zonula occludens appears to be present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号