首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that feeding mice resveratrol activates AMPK and SIRT1 in skeletal muscle leading to deacetylation and activation of PGC-1α, increased mitochondrial biogenesis, and improved running endurance. This study was done to further evaluate the effects of resveratrol, SIRT1, and PGC-1α deacetylation on mitochondrial biogenesis in muscle. Feeding rats or mice a diet containing 4 g resveratrol/kg diet had no effect on mitochondrial protein levels in muscle. High concentrations of resveratrol lowered ATP concentration and activated AMPK in C2C12 myotubes, resulting in an increase in mitochondrial proteins. Knockdown of SIRT1, or suppression of SIRT1 activity with a dominant-negative (DN) SIRT1 construct, increased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C2C12 cells. Expression of a DN SIRT1 in rat triceps muscle also induced an increase in mitochondrial proteins. Overexpression of SIRT1 decreased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C2C12 myotubes. Overexpression of SIRT1 also resulted in a decrease in mitochondrial proteins in rat triceps muscle. We conclude that, contrary to some previous reports, the mechanism by which SIRT1 regulates mitochondrial biogenesis is by inhibiting PGC-1α coactivator activity, resulting in a decrease in mitochondria. We also conclude that feeding rodents resveratrol has no effect on mitochondrial biogenesis in muscle.  相似文献   

2.
近年来,肥胖患病率不断上升,肥胖已成为全球性公共卫生问题.肥胖能够增加高血压、冠心病等心血管疾病的发病风险,防治肥胖已经成为亟待解决的社会问题.米色脂肪是一种产热型脂肪细胞,可在受到寒冷、药物、运动等外界刺激下由白色脂肪细胞转化而来,但其形态和功能却与白色脂肪细胞不同,而与棕色脂肪细胞类似,即米色脂肪同样含有丰富的线粒...  相似文献   

3.
Mitochondria are widely distributed via regulated transport in neurons, but their sites of biogenesis remain uncertain. Most mitochondrial proteins are encoded in the nuclear genome, and evidence has suggested that mitochondrial DNA (mtDNA) replication occurs mainly or entirely in the cell body. However, it has also become clear that nuclear-encoded mitochondrial proteins can be translated in the axon and that components of the mitochondrial replication machinery reside there as well. We assessed directly whether mtDNA replication can occur in the axons of chick peripheral neurons labeled with 5-bromo-2'-deoxyuridine (BrdU). In axons that were physically separated from the cell body or had disrupted organelle transport between the cell bodies and axons, a significant fraction of mtDNA synthesis continued. We also detected the mitochondrial fission protein Drp1 in neurons by immunofluorescence or expression of GFP-Drp1. Its presence and distribution on the majority of axonal mitochondria indicated that a substantial number had undergone recent division in the axon. Because the morphology of mitochondria is maintained by the balance of fission and fusion events, we either inhibited Drp1 expression by RNAi or overexpressed the fusion protein Mfn1. Both methods resulted in significantly longer mitochondria in axons, including many at a great distance from the cell body. These data indicate that mitochondria can replicate their DNA, divide, and fuse locally within the axon; thus, the biogenesis of mitochondria is not limited to the cell body.  相似文献   

4.
5.
6.
7.
Mitochondrial dynamics, specifically fusion and fission processes, maintain mitochondria integrity and function, yet at this time, effect of estrogens on fusion and fission in breast cancer cell lines has not been studied. The aim of this study was to characterize the effect of 17β-estradiol on fusion and fission-related genes, as well as on mitochondria proliferation and function. We used MCF-7 breast cancer cell line, which is estrogen sensitive (estrogen receptor positive). Cells were grown in Dulbecco's modified Eagle medium charcoal-stripped fetal bovine serum and treated with 1nM of 17β-estradiol and with/without 100nM of ICI 182,780, a drug that caused rapid degradation of estrogen receptor. mRNA levels of fusion (mfn1, mfn2, opa1) and fission-related genes (drp1 and fis1) were examined by RT-PCR, cardiolipin content by N-acridyl-orange fluorescence and oxidative phosphorylation protein levels, as well as, the major fusion and fission related protein levels, by Western blot. mRNA expression of fusion-related genes increased after 17β-estradiol-treatment for 4h; however fis1 fission-related gene expression decreased. All these effects were not found in cells pre-treated with ICI 182,780, save for the changes in mfn-1, conferring them the effects of 17β-estradiol to estrogen receptor. The changes in protein levels were less prominent, but in the same way, than in mRNA levels, showing an increase in Mfn1 and Mfn2, as well as in Drp1, but there was no change in Fis1 protein levels. Mitochondrial biogenesis was also affected by 17β-estradiol, showing an increase in mtDNA but with no change in N-acridyl-orange fluorescence. On the whole, our results suggest an imbalance in the fusion/fission ratio, with a high fusion by 17β-estradiol-estrogen receptor action, which can affect to mitochondrial biogenesis, concretely in mitochondria proliferation. According to this information, 17β-estradiol would modify mitochondrial dynamics, biogenesis and metabolism, and thus compromise the normal development and function of mitochondria in cancer affected tissues.  相似文献   

8.
Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson''s disease, Alper''s syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.  相似文献   

9.
10.
Mitochondria exist in networks that are continuously remodeled through fusion and fission. Why do individual mitochondria in living cells fuse and divide continuously? Protein machinery and molecular mechanism for the dynamic nature of mitochondria have been almost clarified. However, the biological significance of the mitochondrial fusion and fission events has been poorly understood, although there is a possibility that mitochondrial fusion and fission are concerned with quality controls of mitochondria. trans-mitochondrial cell and mouse models possessing heteroplasmic populations of mitochondrial DNA (mtDNA) haplotypes are quite efficient for answering this question, and one of the answers is “mitochondrial functional complementation” that is able to regulate respiratory function of individual mitochondria according to “one for all, all for one” principle. In this review, we summarize the observations about mitochondrial functional complementation in mammals and discuss its biological significance in pathogeneses of mtDNA-based diseases.  相似文献   

11.
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson’s disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.  相似文献   

12.
13.
Mitochondrial quality control is fundamental to all neurodegenerative diseases, including the most prominent ones, Alzheimer’s Disease and Parkinsonism. It is accomplished by mitochondrial network dynamics – continuous fission and fusion of mitochondria. Mitochondrial fission is facilitated by DRP1, while MFN1 and MFN2 on the mitochondrial outer membrane and OPA1 on the mitochondrial inner membrane are essential for mitochondrial fusion. Mitochondrial network dynamics are regulated in highly sophisticated ways by various different posttranslational modifications, such as phosphorylation, ubiquitination, and proteolytic processing of their key-proteins. By this, mitochondria process a wide range of different intracellular and extracellular parameters in order to adapt mitochondrial function to actual energetic and metabolic demands of the host cell, attenuate mitochondrial damage, recycle dysfunctional mitochondria via the mitochondrial autophagy pathway, or arrange for the recycling of the complete host cell by apoptosis. Most of the genes coding for proteins involved in this process have been associated with neurodegenerative diseases. Mutations in one of these genes are associated with a neurodegenerative disease that originally was described to affect retinal ganglion cells only. Since more and more evidence shows that other cell types are affected as well, we would like to discuss the pathology of dominant optic atrophy, which is caused by heterozygous sequence variants in OPA1, in the light of the current view on OPA1 protein function in mitochondrial quality control, in particular on its function in mitochondrial fusion and cytochrome C release. We think OPA1 is a good example to understand the molecular basis for mitochondrial network dynamics.  相似文献   

14.
Accumulation of mitochondrial DNA (mtDNA) mutations has been implicated in a wide range of human pathologies, including neurodegenerative diseases, sarcopenia, and the aging process itself. In cells, mtDNA molecules are constantly turned over (i.e. replicated and degraded) and are also exchanged among mitochondria during the fusion and fission of these organelles. While the expansion of a mutant mtDNA population is believed to occur by random segregation of these molecules during turnover, the role of mitochondrial fusion-fission in this context is currently not well understood. In this study, an in silico modeling approach is taken to investigate the effects of mitochondrial fusion and fission dynamics on mutant mtDNA accumulation. Here we report model simulations suggesting that when mitochondrial fusion-fission rate is low, the slow mtDNA mixing can lead to an uneven distribution of mutant mtDNA among mitochondria in between two mitochondrial autophagic events leading to more stochasticity in the outcomes from a single random autophagic event. Consequently, slower mitochondrial fusion-fission results in higher variability in the mtDNA mutation burden among cells in a tissue over time, and mtDNA mutations have a higher propensity to clonally expand due to the increased stochasticity. When these mutations affect cellular energetics, nuclear retrograde signalling can upregulate mtDNA replication, which is expected to slow clonal expansion of these mutant mtDNA. However, our simulations suggest that the protective ability of retrograde signalling depends on the efficiency of fusion-fission process. Our results thus shed light on the interplay between mitochondrial fusion-fission and mtDNA turnover and may explain the mechanism underlying the experimentally observed increase in the accumulation of mtDNA mutations when either mitochondrial fusion or fission is inhibited.  相似文献   

15.
Mitochondria are dynamic organelles, and their fusion and fission regulate cellular signaling, development, and mitochondrial homeostasis, including mitochondrial DNA (mtDNA) distribution. Cardiac myocytes have a specialized cytoplasmic structure where large mitochondria are aligned into tightly packed myofibril bundles; however, recent studies have revealed that mitochondrial dynamics also plays an important role in the formation and maintenance of cardiomyocytes. Here, we precisely analyzed the role of mitochondrial fission in vivo. The mitochondrial fission GTPase, Drp1, is highly expressed in the developing neonatal heart, and muscle-specific Drp1 knockout (Drp1-KO) mice showed neonatal lethality due to dilated cardiomyopathy. The Drp1 ablation in heart and primary cultured cardiomyocytes resulted in severe mtDNA nucleoid clustering and led to mosaic deficiency of mitochondrial respiration. The functional and structural alteration of mitochondria also led to immature myofibril assembly and defective cardiomyocyte hypertrophy. Thus, the dynamics of mtDNA nucleoids regulated by mitochondrial fission is required for neonatal cardiomyocyte development by promoting homogeneous distribution of active mitochondria throughout the cardiomyocytes.  相似文献   

16.
The role of nuclear DNA (nDNA)-encoded proteins in the regulation of mitochondrial fission and fusion has been documented, yet the role of mitochondrial DNA (mtDNA) and encoded proteins in mitochondrial biogenesis remains unknown. Long-term treatment of a lymphoblastoid cell line Molt-4 with ethidium bromide generated mtDNA-deficient rho0 mutants. Depletion of mtDNA in rho0 cells produced functional and morphological changes in mitochondria without affecting the nuclear genome and encoded proteins. Indeed, the gene encoding subunit II of mitochondrial cytochrome c oxidase (COX II), a prototypical mitochondrial gene, was reduced in rho0 mutants blunting the activity of mitochondrial cytochrome coxidase. Yet, the amount of the nuclear beta-actin gene and the activity of citrate synthase, a mitochondrial matrix enzyme encoded by nDNA, remained unaffected in rho0 cells. Loss of mtDNA in rho0 cells was associated with significant distortion of mitochondrial structure, decreased electron density of the matrix and disorganized inner and outer membranes, resulting in the appearance of 'ghost-like' mitochondria. However, the number of mitochondria-like structures was not significantly different between mtDNA-deficient and parental cells. Thus, we conclude that cells lacking mtDNA still generate mitochondrial scaffolds, albeit with aberrant function.  相似文献   

17.
The main purpose of this study was to examine whether streptozotocin (STZ)-induced type 1 diabetes (T1D) and insulin (INS) treatment affect mitochondrial function, fission/fusion and biogenesis, autophagy and tau protein phosphorylation in cerebral cortex from diabetic rats treated or not with INS. No significant alterations were observed in mitochondrial function as well as pyruvate levels, despite the significant increase in glucose levels observed in INS-treated diabetic rats. A significant increase in DRP1 protein phosphorylated at Ser616 residue was observed in the brain cortex of STZ rats. Also an increase in NRF2 protein levels and in the number of copies of mtDNA were observed in STZ diabetic rats, these alterations being normalized by INS. A slight decrease in LC3-II levels was observed in INS-treated rats when compared to STZ diabetic animals. An increase in tau protein phosphorylation at Ser396 residue was observed in STZ diabetic rats while INS treatment partially reversed that effect. Accordingly, a modest reduction in the activation of GSK3β and a significant increase in the activity of phosphatase 2A were found in INS-treated rats when compared to STZ diabetic animals. No significant alterations were observed in caspases 9 and 3 activity and synaptophysin and PSD95 levels. Altogether our results show that mitochondrial alterations induced by T1D seem to involve compensation mechanisms since no significant changes in mitochondrial function and synaptic integrity were observed in diabetic animals. In addition, INS treatment is able to normalize the alterations induced by T1D supporting the importance of INS signaling in the brain.  相似文献   

18.
19.
Mitochondria have a crucial role in the supply of energy to the brain. Mitochondrial alterations can lead to detrimental consequences on the function of brain cells and are thought to have a pivotal role in the pathogenesis of several neurologic disorders. This study was aimed to evaluate mitochondrial function, fusion–fission and biogenesis and autophagy in brain cortex of 6-month-old Goto–Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes (T2D). No statistically significant alterations were observed in mitochondrial respiratory chain and oxidative phosphorylation system. A significant decrease in the protein levels of OPA1, a protein that facilitates mitochondrial fusion, was observed in brain cortex of GK rats. Furthermore, a significant decrease in the protein levels of LC3-II and a significant increase in protein levels of mTOR phosphorylated at serine residue 2448 were observed in GK rats suggesting a suppression of autophagy in diabetic brain cortex. No significant alterations were observed in the parameters related to mitochondrial biogenesis. Altogether, these results demonstrate that during the early stages of T2D, brain mitochondrial function is maintained in part due to a delicate balance between mitochondrial fusion–fission and biogenesis and autophagy. However, future studies are warranted to evaluate the role of mitochondrial quality control pathways in late stages of T2D.  相似文献   

20.
The aim of this study was to determine the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in streptozotocin (STZ)-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000–4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups) or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm) for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号