首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spencer G. Lucas 《Ichnos》2013,20(1-2):5-38
Tetrapod footprints have a fossil record in rocks of Devonian-Neogene age. Three principal factors limit their use in biostratigraphy and biochronology (palichnostratigraphy): invalid ichnotaxa based on extramorphological variants, slow apparent evolutionary turnover rates and facies restrictions. The ichnotaxonomy of tetrapod footprints has generally been oversplit, largely due to a failure to appreciate extramorphological variation. Thus, many tetrapod footprint ichnogenera and most ichnospecies are useless phantom taxa that confound biostratigraphic correlation and biochronological subdivision. Tracks rarely allow identification of a genus or species known from the body fossil record. Indeed, almost all tetrapod footprint ichnogenera are equivalent to a family or a higher taxon (order, superorder, etc.) based on body fossils. This means that ichnogenera necessarily have much longer temporal ranges and therefore slower apparent evolutionary turnover rates than do body fossil genera. Because of this, footprints cannot provide as refined a subdivision of geological time as do body fossils. The tetrapod footprint record is much more facies controlled than the tetrapod body fossil record. The relatively narrow facies window for track preservation, and the fact that tracks are almost never transported, redeposited or reworked, limits the facies that can be correlated with any track-based biostratigraphy.

A Devonian-Neogene global biochronology based on tetrapod footprints generally resolves geologic time about 20 to 50 percent as well as does the tetrapod body fossil record. The following globally recognizable time intervals can be based on the track record: (1) Late Devonian; (2) Mississippian; (3) Early-Middle Pennsylvanian; (4) Late Pennsylvanian; (5) Early Permian; (6) Late Permian; (7) Early-Middle Triassic; (8) late Middle Triassic; (9) Late Triassic; (10) Early Jurassic; (11) Middle-Late Jurassic; (12) Early Cretaceous; (13) Late Cretaceous; (14) Paleogene; (15) Neogene. Tetrapod footprints are most valuable in establishing biostratigraphic datum points, and this is their primary value to understanding the stratigraphic (temporal) dimension of tetrapod evolution.  相似文献   

2.
An assemblage of abundant and well-preserved tetrapod footprints has been discovered in the Tanamert Member (T3) of the Triassic Timezgadiouine Formation (Argana basin, western High Atlas, Morocco). It is the first fossil record from T3. Surfaces from different localities show a uniform tetrapod ichnofauna that consists of chirotherian and small lacertoid forms. The chirotherians are assigned to the plexus Protochirotherium—Synaptichnium, their trackmakers interpreted as basal archosaurs. The lacertoid imprints show close affinities with Rhynchosauroides and may reflect archosauromorphs or lepidosauromorphs. Protochirotherium—Synaptichnium assemblages are characteristic of the Early Triassic and were known previously only from units of this age in central Europe. Biostratigraphically, the European record implies a wide-spread pre-Anisian Protochirotherium—Synaptichnium dominated assemblage preceding the first appearance of Chirotherium barthii near the Olenekian-Anisian boundary. The stratigraphic position of T3 between Late Permian (uppermost T2) and Middle Triassic (T4) and the European correlatives suggest an Early Triassic age of this unit. It is the first record of Early Triassic continental deposits in Morocco. The surfaces from T3 open up perspectives for further contributions to ecology, biogeography and locomotion of early archosaurs. Furthermore, excellent outcrops and quality of footprint preservation in the Argana basin offer a potential for clarification of ichnotaxonomic and biostratigraphic issues.  相似文献   

3.
4.
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end‐Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian–Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian–Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, ‘Palaeopterygii’, ‘Subholostei’, Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end‐Guadalupian crisis is not evident from our data, but ‘palaeopterygians’ experienced a significant body size increase across the Guadalupian–Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian–Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, ‘palaeopterygians’, ‘subholosteans’) and a second one during the Middle Triassic (‘subholosteans’, neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a significant reduction in osteichthyan body size. Neopterygii, the clade that encompasses the vast majority of extant fishes, underwent another diversification phase in the Late Triassic. The Triassic radiation of Osteichthyes, predominantly of Actinopterygii, which only occurred after severe extinctions among Chondrichthyes during the Middle–Late Permian, resulted in a profound change within global fish communities, from chondrichthyan‐rich faunas of the Permo‐Carboniferous to typical Mesozoic and Cenozoic associations dominated by actinopterygians. This turnover was not sudden but followed a stepwise pattern, with leaps during extinction events.  相似文献   

5.
Restudy of the unique diapsid reptile Mesosuchus browni Watson, from the Cynognathus Assemblage Zone (late Early Triassic to early Middle Triassic) of the Burgersdorp Formation (Tarkastad Subgroup; Beaufort Group) of South Africa, confirms that it is the most plesiomorphic known member of the Rhynchosauria. A new phylogenetic analysis of basal taxa of Archosauromorpha indicates that Choristodera falls outside of the Sauria, Prolacertiformes is a paraphyletic taxon with Prolacerta sharing a more recent common ancestor with Archosauriformes than with any other clade, Megalancosaurus and Drepanosaurus are sister taxa in the clade Drepanosauridae within Archosauromorpha, and are the sister group to the clade Tanystropheidae composed of Tanystropheus, Macrocnemus, and Langobardisaurus. Combination of the phylogenetic relationships of basal archosauromorphs and their known stratigraphic ranges reveals significant gaps in the fossil records of Late Permian and Triassic diapsids. Extensions of the temporal ranges of several lineages of diapsids into the Late Permian suggests that more groups of terrestrial reptiles survived the end-Permian mass extinction than thought previously.  相似文献   

6.
Abstract:  The end-Permian mass extinction, 252 million years (myr) ago, marks a major shift in the posture of tetrapods. Before the mass extinction, terrestrial tetrapods were sprawlers, walking with their limbs extended to the sides; after the event, most large tetrapods had adopted an erect posture with their limbs tucked under the body. This shift had been suspected from the study of skeletal fossils, but had been documented as a long process that occupied some 15–20 myr of the Triassic. This study reads posture directly from fossil tracks, using a clear criterion for sprawling vs erect posture. The track record is richer than the skeletal record, especially for the Early and Middle Triassic intervals, the critical 20 myr during which period the postural shift occurred. The shift to erect posture was completed within the 6 myr of the Early Triassic and affected both lineages of medium to large tetrapods of the time, the diapsids and synapsids.  相似文献   

7.
Here we report a tooth of a large archosauriform from the Upper Triassic of New Mexico, USA that displays developmental anomalies of carina formation. This tooth has two supernumerary carinae, both on the lingual side of the tooth. Previously, carina anomalies of this sort were primarily known from theropod dinosaurs, but always from the labial surface. Integrating this specimen into a reassessment of the published accounts of carina anomalies in other fossil diapsids reveals that supernumerary carinae are more widespread throughout Archosauriformes than previously reported. Our interpretation of this developmental anomaly highlights the present lack of understanding of tooth development in archosaurs, particularly carina formation, and suggests that crown morphology development in archosauriforms may be constrained differently than it is in mammals. This developmental constraint may explain the differences observed between the complexity found in mammal and archosauriform cusp morphology.  相似文献   

8.
Three possible hypotheses could explain the polarity of the histological features of basal archosauriform and archosauromorph reptiles: either, the fibrolamellar complex is basal; or, the lamellar-zonal complex is basal or finally, the condition varied, and each complex evolved more than once in these early groups. The answer to this question would have broad implications for our understanding of the physiological, ecological, and behavioral features of the first archosaurs. To this end, we sampled the bone histology of various archosauriforms and basal archosaurs from the Triassic and Lower Jurassic: erythrosuchids, proterochampsids, euparkeriids, and basal ornithischian dinosaurs, including forms close to the origin of archosaurs but poorly assessed phylogenetically. The new data suggest that the possibility of reaching and maintaining very high growth rates through ontogeny could have been a basal characteristic of archosauriforms. This was partly retained (at least during early ontogeny) in most lineages of Triassic pseudosuchians, which nevertheless generally relied on lower growth rates to reach large body sizes. This trend to slower growth seems to have been further emphasized among Crocodylomorpha, which may thus have secondarily reverted toward more generalized reptilian growth strategies. Accordingly, their “typical ectothermic reptilian condition” may be a derived condition within archosauriforms, homoplastic to the generalized physiological condition of basal amniotes. On the other hand, ornithosuchians apparently retained and even enhanced the high growth rates of many basal archosauriforms during most of their ontogenetic trajectories. The Triassic may have been a time of “experimentation” in growth strategies for several archosauriform lineages, only one of which (ornithodirans) eventually stayed with the higher investment strategy successfully.  相似文献   

9.
《Comptes Rendus Palevol》2003,2(1):103-117
Until 1960, the record of dinosaurs was rather poor in Switzerland. Between 1960 and 1980, several new localities with plateosaurid remains as well as prosauropod and theropod tracks were found in Late Triassic sabkha and floodplain environments. The discovery of large surfaces with sauropod tracks in the Late Jurassic of the Jura Mountains in 1987 triggered a stream of new data. More than 20 new localities with tracks from both sauropod and theropod dinosaurs in different stratigraphic levels have been found since then. The latest discoveries include trackways of iguanodontids from the Early Cretaceous of the central Swiss Alps and a large Late Jurassic surface with trackways of small sauropods in the northernmost part of the Jura Mountains. The best skeletal record comes from the Late Triassic, with scattered data from the Late Jurassic. The track and trackway record appears to be best in the Late Jurassic. To cite this article: C.A. Meyer, B. Thüring, C. R. Palevol 2 (2003) 103–117.  相似文献   

10.
Simplification as a trend in synapsid cranial evolution   总被引:1,自引:0,他引:1  
The prevalence and meaning of morphological trends in the fossil record have undergone renewed scrutiny in recent years. Studies have typically focused on trends in body size evolution, which have yielded conflicting results, and have only rarely addressed the question as to whether other morphological characteristics show persistent directionality over long time scales. I investigated reduction in number of skull and lower jaw bones (through loss or fusion) over approximately 150 million years of premammalian synapsid history. The results of a new skull simplification metric (SSM), which is defined as a function of the number of distinct elements, show that pronounced simplification is evident on both temporal (i.e., stratigraphic) and phylogenetic scales. Postcranial evolution exhibits a similar pattern. Skull size, in contrast, bears little relationship with the number of distinct skull bones present. Synapsid skulls carried close to their observed maximum number of elements for most of the Late Carboniferous and Early Permian. The SSM decreased in the Late Permian but, coincident with the radiation of early therapsids, the range of observed SSM values widened during this interval. From derived nonmammalian cynodonts in the Early Triassic through the earliest mammals in the Early Jurassic, both the minimum and maximum SSM decreased. Data from three representative modern mammals (platypus, opossum, and human) suggest that this trend continues through the Cenozoic. In a phylogenetic context, the number of skull elements present in a taxon shows a significant negative relationship with the number of branching events passed from the root of the tree; more deeply embedded taxa have smaller SSM scores. This relationship holds for various synapsid subgroups as well. Although commonly ascribed to the effects of long-term selection, evolutionary trends can alternatively reflect an underlying intrinsic bias in morphological change. In the case of synapsid skull bones (and those of some other tetrapods lineages), the rare production of novel, or neomorphic, elements may have contributed to the observed trend toward skeletal simplification.  相似文献   

11.
Proterosuchids are an important group of carnivorous basal archosauriforms characterized by a bizarre and enigmatic downturned premaxilla that overhangs the lower jaw. They are particularly significant because they radiated in the immediate aftermath of the Permian–Triassic mass extinction and represent one of the best known ‘disaster taxa’ following that event. While traditionally considered to be semi-aquatic, recent histological studies and geological data have suggested that it is more likely that they inhabited terrestrial environments. By using computed tomographic (CT) data, we virtually reconstruct the brain endocast and endosseous labyrinths of two adult specimens of Proterosuchus fergusi from the earliest Triassic of South Africa, in an attempt to understand its life habits within the context of basal archosauriform evolution. Endocasts reveal that the brain cavity is tubular in shape and the endosseous labyrinths are highly pyramidal. The angle of the lateral semicircular canal suggests that P. fergusi naturally held its head upwards ~17°, while the length of the cochlear duct suggests its auditory abilities were specialized towards low-frequency sounds. Furthermore, beam theory analysis suggests that the rostrum of P. fergusi is highly resistant to both bending and torsion when compared to modern crocodilians, although this resistance is neither enhanced nor reduced by the overhanging premaxilla. Comparative anatomical analyses suggest P. fergusi was probably a semi-aquatic, generalist apex predator capable of surviving the harsh environmental perturbations of the Early Triassic.  相似文献   

12.
Proterosuchidae is one of the first clades of Archosauriformes (archosaurs and closely related species) to appear in the fossil record, with the richest sample of the group coming from the Lystrosaurus Assemblage Zone (earliest Triassic) of South Africa. Four nominal proterosuchid species were described from South Africa during the twentieth century (Proterosuchus fergusi, Chasmatosaurus vanhoepeni, Chasmatosaurus alexanderi and Elaphrosuchus rubidgei), but interpretations of their taxonomy have been widely disparate. The most recent taxonomic revision concluded that P. fergusi is the only valid species and that the other nominal species are junior subjective synonyms of this taxon. This proposal was based on the interpretation that anatomical differences between the nominal species could be explained as a result of ontogenetic changes and/or post‐mortem deformation. The recent discoveries of multiple new South African proterosuchid specimens provide an impetus to revisit their taxonomy. Based upon a comprehensive re‐examination of all known specimens, as well as examination of other proterosuchid taxa in collections worldwide, we conclude that the holotype of Proterosuchus fergusi is undiagnostic. As a result, we propose a neotype (RC 846) for the species. ‘Chasmatosaurus vanhoepeni’ and ‘Elaphrosuchus rubidgei’ are considered subjective junior synonyms of P. fergusi. ‘Chasmatosaurusalexanderi is considered a valid species, for which we propose the new combination P. alexanderi comb. nov. A third species, P. goweri sp. nov., is erected on the basis of a single specimen (NMQR 880). All three species recognized here are taxonomically distinct from a previously described archosauriform maxilla from the lower Lystrosaurus AZ. As a result, we recognize a minimum of four archosauriform species following the Permo‐Triassic mass extinction in South Africa. Our results suggest a greater species richness of earliest Triassic archosauriforms than previously appreciated, but that archosauriform morphological disparity remained low and did not expand until the late Early Triassic – early Mid‐Triassic.  相似文献   

13.
14.
Abstract:  Coprolites from the Arcadia Formation, Queensland, Australia, were studied in conjunction with the vertebrate fossil assemblages from two localities to maximize our understanding of the palaeoecology of these Early Triassic deposits. Criteria used by other researchers to identify the producers of coprolites were found to be of little value in the Arcadia Formation specimens. Using a combination of shape, biostratigraphic distribution, size and included remains some of the coprolites are attributed to basal archosauromorphs and fish whereas others could not be identified. Perhaps the most important attribute of the Arcadia coprolites is that they preserved rare organisms such as cyanobacteria, insects and other arthropods, and a diversity of fish. Estimates of the number of actinopterygians and dipnoans preserved in coprolites significantly increased relative abundance estimates based on skeletal elements alone. Although coprolites are an important source of palaeobiological information, this information is limited by our poor understanding of the taphonomic processes involved in the fossilization of faecal matter and by the near impossibility of assigning coprolites to specific producers.  相似文献   

15.
The earliest undisputed crown-group amniotes date back to the Late Carboniferous, but the fossil record of amniotic eggs and embryos is very sparse, with the oldest described examples being from the Triassic. Here, we report exceptional, well-preserved amniotic mesosaur embryos from the Early Permian of Uruguay and Brazil. These embryos provide the earliest direct evidence of reproductive biology in Paleozoic amniotes. The absence of a recognisable eggshell and the occurrence of a partially articulated, but well-preserved embryo within an adult individual suggest that mesosaurs were viviparous or that they laid eggs in advanced stages of development. Our finds represent the only known documentation of amniotic embryos in the Paleozoic and the earliest known case of viviparity, thus extending the record of these reproductive strategies by 90 and 60 Ma, respectively.  相似文献   

16.
A new scanilepiform, Beishanichthys brevicaudalis gen. et sp. nov. , is named and described based on fossils from the Lower Triassic lake deposits exposed in Beishan area, Gansu Province, China. The discovery documents a new record of this group, which is significantly older than other known scanilepiforms from China, and is slightly younger than Evenkia from the Lowest Triassic of Central Siberia. Although the Beishan beds were previously interpreted as Late Permian in age, based on megaplant fossils, this new discovery supports the reinterpretation of the deposits as Early Triassic in age, based on vertebrate fossils from the same locality and horizon. Phylogenetic analysis was conducted to resolve the relationships of Scanilepiformes with other actinopterygian clades, and the inter‐relationships within Scanilepiformes. Contrary to previous thought that scanilepiforms are closely related to the Amiidae, the phylogenetic results of this study recognize the Scanilepiformes as stem‐group neopterygians. Relationships of the Scanilepiformes and Australosomus with other neopterygians remain unresolved. With a characteristic long‐based dorsal fin, scanilepiforms represent a small group that emerged in Early Triassic freshwater environments, inhabited Eurasia and North America during the Middle–Late Triassic, briefly invaded the marine environment by the Late Triassic in Europe, and became extinct at the end of Triassic. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 595–612.  相似文献   

17.
《Comptes Rendus Palevol》2005,4(6-7):623-636
The southern half of the main Karoo Basin in South Africa contains an almost continuous stratigraphic record of terrestrial sedimentation through the Permo-Triassic boundary (PTB). Detailed logging of multiple sections through the boundary sequence has defined the end-Permian mass extinction event using vertebrate fossils as well as a synchronous change in fluvial style reflecting a rapid aridification of climate. Field data demonstrates a 69% mass extinction of Late Permian terrestrial vertebrates lasting some 300 kyr terminating at the PTB, followed by a lesser extinction event (31%) approximately 160 kyr later involving four survivor taxa that crossed the PTB. The Early Triassic recovery fauna comprises proterosuchian archosauromorphs (Proterosuchus), small amphibians (Micropholis, Lydekkerina), small procolophonoids (‘Owenetta’ kitchingorum, Procolophon), medium-sized dicynodonts (Lystrosaurus) and small insectivorous cynodonts (Progalesaurus, Galesaurus, Thrinaxodon). Taphonomic bias towards preferential preservation of drought accumulations in the Early Triassic has probably over-emphasized the abundance and diversity of semi aquatic and burrowing animals. To cite this article: R. Smith, J. Botha, C. R. Palevol 4 (2005).  相似文献   

18.
This study examines the morphological responses of Late Permian brachiopods to environmental changes. Quantitative analysis of body size data from Permian–Triassic brachiopods has demonstrated significant, directional changes in body size before, during and after the Late Permian mass extinction event. Brachiopod size significantly reduced before and during the extinction interval, increased for a short time in more extinction‐resistant taxa in the latter stages of extinction and then dramatically reduced again across the Permian/Triassic boundary. Relative abundances of trace elements and acritarchs demonstrate that the body size reductions which happened before, during and after extinction were driven by primary productivity collapse, whereas declining oxygen levels had less effect. An episode of size increase in two of the more extinction‐resistant brachiopod species is unrelated to environmental change and possibly was the result of reduced interspecific competition for resources following the extinction of competitors. Based on the results of this study, predictions can be made for the possible responses of modern benthos to present‐day environmental changes.  相似文献   

19.
《Palaeoworld》2021,30(3):495-502
The Xixipo dinosaur tracksite in the Chuanjie Formation of Yunnan Province is one of the 14 Chinese sites yielding sauropod tracks from between the Triassic–Jurassic and Jurassic–Cretaceous boundaries, but is only one of the two that represent the Middle Jurassic. Although it is a small site, it adds incrementally to the overall track record of the region and allows comparison with the body fossil record and classification of the Chuanjie Formation as a Type 3b or Type 4b deposit in which both the body fossil and trace fossil record, in this case representing sauropodomorphs, are similar in composition and frequency of occurrence. We argue that the sauropod trace and body fossil records, while based on different categories of evidence, are very important. Integrating and correlating all available data from both records increases our understanding of sauropod communities, and both are equally valuable for this. In addition, we also discuss narrow to wide gauge, coeval sauropod trackways from China, and the relationship between the potential trackmaker of China's Jurassic Brontopodus-type trackways and mamenchisaurids and, beginning from the Late Jurassic, representatives of this type and titanosauriform sauropods.  相似文献   

20.
Abstract:  A seed-bearing pinnate leaf found in the Chinle Formation of Late Triassic age in Arizona appears to be an archaic seed fern that more closely resembles typical Carboniferous–Permian seed fern leaves than any younger form. The fossil, which is described here as Chilbinia lichii gen. et sp. nov., incorporates characters of several Palaeozoic taxa. These characters include pinnules that have reticulate venation resembling that in some species of Lonchopteris , cordate bases similar to those found in many species of Sphenopteris , and, except for a significant difference in size, linear ovate seeds that resemble the radially symmetrical seeds found attached to a species of Alethopteris in the Permian of China. The presence of this fossil in strata of Late Triassic age is further evidence that plant extinctions after the Permian–Triassic ecological crisis followed a stepwise pattern and apparently continued for at least 20–25 myr after the end of the Permian in western parts of the Triassic paratropical belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号