首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide cross-protection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future.  相似文献   

2.
Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.  相似文献   

3.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

4.
Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.  相似文献   

5.
Highly pathogenic avian influenza (HPAI) H5N1 virus circulates among a variety of free-ranging wild birds and continually poses a threat to animal and human health. During the winter of 2010-2011, we surveyed Korean wild bird habitats. From 728 fresh fecal samples, 14 HPAI H5N1 viruses were identified. The isolates phylogenetically clustered with other recently isolated clade 2.3.2 HPAI H5N1 viruses isolated from wild birds in Mongolia. All HPAI-positive fecal samples were analyzed by DNA barcoding for host-species identification. Twelve of the 14 HPAI-positive samples were typed as Mandarin Duck (Aix galericulata). The high incidence of HPAI subtype H5N1 viruses in wild Mandarin Duck droppings is a novel finding and underscores the need for enhanced avian influenza virus surveillance in wild Mandarin Ducks. Further investigation of the susceptibility of Mandarin Ducks to HPAI H5N1 clade 2.3.2 virus would aid the understanding of HPAI ecology and epidemiology in wild birds.  相似文献   

6.
Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted.  相似文献   

7.
Outbreaks of highly pathogenic avian influenza (HPAI) caused by H5N1 virus occurred during 2003 to 2004 in Korea and Japan. The H5N1 viruses isolated in both countries were genetically similar at > 99% identity in the nucleotide sequences of all eight RNA segments, indicating that they belong to genotype V and are distinct from HPAI viruses prevalent in southeast Asia that belong to genotype Z. These findings indicate that the H5N1 viruses that caused the HPAI outbreaks in both Korea and Japan were derived from a common ancestor.  相似文献   

8.
In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.  相似文献   

9.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.  相似文献   

10.
Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses.  相似文献   

11.
Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.  相似文献   

12.
Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS) in the hemagglutinin protein (HA). Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.  相似文献   

13.
Belser JA  Zeng H  Katz JM  Tumpey TM 《Journal of virology》2011,85(19):10117-10125
Highly pathogenic avian influenza (HPAI) H7 virus infection in humans frequently results in conjunctivitis as a major symptom. However, our understanding of what properties govern virus subtype-specific tropism, and of the host responses responsible for eliciting ocular inflammation and pathogenicity following influenza virus infection, are not well understood. To study virus-host interactions in ocular tissue, we infected primary human corneal and conjunctival epithelial cells with H7, H5, and H1 subtype viruses. We found that numerous virus subtypes were capable of infecting and replicating in multiple human ocular cell types, with the highest titers observed with highly pathogenic H7N7 and H5N1 viruses. Similar patterns of proinflammatory cytokine and chemokine production following influenza virus infection were observed in ocular and respiratory cells. However, primary ocular cells infected with HPAI H7N7 viruses were found to have elevated levels of interleukin-1β (IL-1β), a cytokine previously implicated in ocular disease pathology. Furthermore, H7N7 virus infection of corneal epithelial cells resulted in enhanced and significant increases in the expression of genes related to NF-κB signal transduction compared with that after H5N1 or H1N1 virus infection. The differential induction of cytokines and signaling pathways in human ocular cells following H7 virus infection marks the first association of H7 subtype-specific host responses with ocular tropism and pathogenicity. In particular, heightened expression of genes related to NF-κB-mediated signaling transduction following HPAI H7N7 virus infection in primary corneal epithelial cells, but not respiratory cells, identifies activation of a signaling pathway that correlates with the ocular tropism of influenza viruses within this subtype.  相似文献   

14.
On 15 November 2016, a black swan that had died in a zoo in Akita prefecture, northern Japan, was strongly suspected to have highly pathogenic avian influenza (HPAI); an HPAI virus (HPAIV) belonging to the H5N6 subtype was isolated from specimens taken from the bird. After the initial report, 230 cases of HPAI caused by H5N6 viruses from wild birds, captive birds, and domestic poultry farms were reported throughout the country during the winter season. In the present study, 66 H5N6 HPAIVs isolated from northern Japan were further characterized. Phylogenetic analysis of the hemagglutinin gene showed that the H5N6 viruses isolated in northern Japan clustered into Group C of Clade 2.3.4.4 together with other isolates collected in Japan, Korea and Taiwan during the winter season of 2016–2017. The antigenicity of the Japanese H5N6 isolate differed slightly from that of HPAIVs isolated previously in Japan and China. The virus exhibited high pathogenicity and a high replication capacity in chickens, whereas virus growth was slightly lower in ducks compared with that of an H5N8 HPAIV isolate collected in Japan in 2014. Comprehensive analyses of Japanese isolates, including those from central, western, and southern Japan, as well as rapid publication of this information are essential for facilitating greater control of HPAIVs.
  相似文献   

15.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

16.
The unparalleled spread of highly pathogenic avian influenza A (HPAI) H5N1 viruses has resulted in devastating outbreaks in domestic poultry and sporadic human infections with a high fatality rate. To better understand the mechanism(s) of H5N1 virus pathogenesis and host responses in humans, we utilized a polarized human bronchial epithelial cell model that expresses both avian alpha-2,3- and human alpha-2,6-linked sialic acid receptors on the apical surface and supports productive replication of both H5N1 and H3N2 viruses. Using this model, we compared the abilities of selected 2004 HPAI H5N1 viruses isolated from humans and a recent human H3N2 virus to trigger the type I interferon (IFN) response. H5N1 viruses elicited significantly less IFN regulatory factor 3 (IRF3) nuclear translocation, as well as delayed and reduced production of IFN-beta compared with the H3N2 virus. Furthermore, phosphorylation of Stat2 and induction of IFN-stimulated genes (ISGs), such as MX1, ISG15, IRF7, and retinoic acid-inducible gene I, were substantially delayed and reduced in cells infected with H5N1 viruses. We also observed that the highly virulent H5N1 virus replicated more efficiently and induced a weaker IFN response than the H5N1 virus that exhibited low virulence in mammals in an earlier study. Our data suggest that the H5N1 viruses tested, especially the virus with the high-pathogenicity phenotype, possess greater capability to attenuate the type I IFN response than the human H3N2 virus. The attenuation of this critical host innate immune defense may contribute to the virulence of H5N1 viruses observed in humans.  相似文献   

17.
Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses   总被引:1,自引:0,他引:1  
The highly pathogenic avian influenza (HPAI) H5N1 virus lineage has undergone extensive genetic reassortment with viruses from different sources to produce numerous H5N1 genotypes, and also developed into multiple genetically distinct sublineages in China. From there, the virus has spread to over 60 countries. The ecological success of this virus in diverse species of both poultry and wild birds with frequent introduction to humans suggests that it is a likely source of the next human pandemic. Therefore, the evolutionary and ecological characteristics of its emergence from wild birds into poultry are of considerable interest. Here, we apply the latest analytical techniques to infer the early evolutionary dynamics of H5N1 virus in the population from which it emerged (wild birds and domestic poultry). By estimating the time of most recent common ancestors of each gene segment, we show that the H5N1 prototype virus was likely introduced from wild birds into poultry as a non-reassortant low pathogenic avian influenza H5N1 virus and was not generated by reassortment in poultry. In contrast, more recent H5N1 genotypes were generated locally in aquatic poultry after the prototype virus (A/goose/Guangdong/1/96) introduction occurred, i.e., they were not a result of additional emergence from wild birds. We show that the H5N1 virus was introduced into Indonesia and Vietnam 3-6 months prior to detection of the first outbreaks in those countries. Population dynamics analyses revealed a rapid increase in the genetic diversity of A/goose/Guangdong/1/96 lineage viruses from mid-1999 to early 2000. Our results suggest that the transmission of reassortant viruses through the mixed poultry population in farms and markets in China has selected HPAI H5N1 viruses that are well adapted to multiple hosts and reduced the interspecies transmission barrier of those viruses.  相似文献   

18.
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates.  相似文献   

19.
Highly pathogenic avian influenza (HPAI) caused by the H5N1 subtype has given rise to serious damage in poultry industries in Asia. The virus has expanded its geographical range to Europe and Africa, posing a great risk to human health as well. For the control of avian influenza, a rapid diagnosis by detecting the causative virus and identifying its subtype is essential. In the present study, a rapid diagnosis kit combining immunochromatography with enzyme immunoassay which detects the H5 HA antigen of influenza A virus was developed using newly established anti-H5 HA monoclonal antibodies. The present kit specifically detected all of the H5 influenza viruses tested, and did not react with the other HA subtypes. H5 HA antigens were detected from swabs and tissue homogenates of chickens infected with HPAI virus strain A/chicken/Yamaguchi/7/04 (H5N1) from 2 days post inoculation. The kit showed enough sensitivity and specificity for the rapid diagnosis of HPAI.  相似文献   

20.
The route by which highly pathogenic avian influenza (HPAI) H5N1 virus spreads systemically, including the central nervous system (CNS), is largely unknown in mammals. Especially, the olfactory route, which could be a route of entry into the CNS, has not been studied in detail. Although the multibasic cleavage site (MBCS) in the hemagglutinin (HA) of HPAI H5N1 viruses is a major determinant of systemic spread in poultry, the association between the MBCS and systemic spread in mammals is less clear. Here we determined the virus distribution of HPAI H5N1 virus in ferrets in time and space-including along the olfactory route-and the role of the MBCS in systemic replication. Intranasal inoculation with wild-type H5N1 virus revealed extensive replication in the olfactory mucosa, from which it spread to the olfactory bulb and the rest of the CNS, including the cerebrospinal fluid (CSF). Virus spread to the heart, liver, pancreas, and colon was also detected, indicating hematogenous spread. Ferrets inoculated intranasally with H5N1 virus lacking an MBCS demonstrated respiratory tract infection only. In conclusion, HPAI H5N1 virus can spread systemically via two different routes, olfactory and hematogenous, in ferrets. This systemic spread was dependent on the presence of the MBCS in HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号