首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adiponectin (APN), an adipokine, exerts an anti-inflammatory and anti-cancerous activity with its role in glucose and lipid metabolism and its absence related to several obesity related malignancies including colorectal cancer. The aim of this study is to determine the effect of APN deficiency on the chronic inflammation-induced colon cancer. This was achieved by inducing inflammation and colon cancer in both APN knockout (KO) and C57B1/6 wild type (WT) mice. They were divided into four treatment groups (n=6): 1) control (no treatment); 2) treatment with three cycles of dextran sodium sulfate (DSS); 3) weekly doses of 1,2-dimethylhydrazine (DMH) (20mg/kg of mouse body weight) for twelve weeks; 4) a single dose of DMH followed by 3 cycles of DSS (DMH+DSS). Mice were observed for diarrhea, stool hemoccult, and weight loss and were sacrificed on day 153. Tumor area and number were counted. Colonic tissues were collected for Western blot and immunohistochemistry analyses. APNKO mice were more protected than WT mice from DSS induced colitis during first DSS cycle, but lost this protection during the second and the third DSS cycles. APNKO mice had significantly severe symptoms and showed greater number and larger area of tumors with higher immune cell infiltration and inflammation than WT mice. This result was further confirmed by proteomic study including pSTAT3, pAMPK and Cox-2 by western blot and Immunohistochemistry. Conclusively, APN deficiency contributes to inflammation-induced colon cancer. Hence, APN may play an important role in colorectal cancer prevention by modulating genes involved in chronic inflammation and tumorigenesis.  相似文献   

3.
Since aberrant wound healing and chronic inflammation can promote malignant transformation, we determined whether dietary bioactive fish oil (FO)-derived n-3 polyunsaturated fatty acids (n-3 PUFA) modulate stem cell kinetics in a colitis-wounding model. Lgr5-LacZ and Lgr5-EGFP-IRES-creER(T2) mice were fed diets enriched with n-3 PUFA vs n-6 PUFA (control) and exposed to dextran sodium sulfate (DSS) for 5days in order to induce crypt damage and colitis throughout the colon. Stem cell number, cell proliferation, apoptosis, expression of stem cell (Lgr5, Sox9, Bmi1, Hopx, mTert, Ascl2, and DCAMKL-1) and inflammation (STAT3) markers were quantified. DSS treatment resulted in the ablation of Lgr5(+) stem cells in the distal colon, concurrent with the loss of distal crypt structure and proliferating cells. Lgr5, Ascl2 and Hopx mRNA expression levels were decreased in damaged colonic mucosa. Lgr5(+) stem cells reappeared at day 5 of DSS recovery, with normal levels attained by day 6 of recovery. There was no effect of diet on the recovery of stem cells. FO fed animals exhibited higher levels of phospho-STAT3 at all time points, consistent with a higher wounding by DSS in FO feeding. n-3 PUFA-fed mice exhibited a reduction in stem cell associated factors, Ascl2, Axin2 and EphB3. These results indicate that rapidly cycling Lgr5(+) stem cells residing at position 1 in the colon epithelium are highly susceptible to DSS-induced damage and that dietary cues can impact stem cell regulatory networks.  相似文献   

4.
Exposure to dextran sulfate sodium (DSS) induces acute colitis, which is normally resolved after DSS removal. To study chronicity, mice are typically subjected to three to five cycles of weekly DSS exposures, each followed by a 1- to 2-wk rest period. Here, we describe a novel and convenient way of inducing chronic, progressive colitis by a single exposure to DSS. C57BL/6 mice exposed to DSS for 5 days developed acute colitis that progressed to severe chronic inflammation. The plasma haptoglobin levels remained high during the chronic phase, showing that the inflammation was active. Surprisingly, the mice regained their original weight along with the progression of colitis, and the only apparent symptom was loose feces. Histopathological changes 4 wk after DSS removal were dense infiltrates of mononuclear cells, irregular epithelial structure, and persistent deposits of collagen. A progressive production of the cytokines IL-1beta, IL-12 p70, and IL-17 correlated with the extensive cellular infiltration, whereas high IFN-gamma production was mainly found late in the chronic phase. Similar to C57BL/6 mice, BALB/c mice exposed to 5 days of DSS developed acute colitis as previously described. The acute colitis was accompanied by elevated plasma levels of haptoglobin and increased colonic levels of IL-1alpha/beta, IL-6, IL-18, and granulocyte colony-stimulating factor. However, soon after DSS removal, BALB/c mice recovered and were symptom free within 2 wk and completely recovered 4 wk after DSS removal in terms of histopathology, haptoglobin levels, and local cytokine production. In summary, these data stress the effect of genetic background on the outcome of DSS provocation. We believe that the present protocol to induce chronic colitis in C57BL/6 mice offers a robust model for validating future therapies for treatment of inflammatory bowel disease.  相似文献   

5.
Adiponectin (APN), an adipokine, exerts an anti-inflammatory and anti-cancerous activity with its role in glucose and lipid metabolism and its absence related to several obesity related malignancies including colorectal cancer. The aim of this study is to determine the effect of APN deficiency on the chronic inflammation-induced colon cancer. This was achieved by inducing inflammation and colon cancer in both APN knockout (KO) and C57B1/6 wild type (WT) mice. They were divided into four treatment groups (n = 6): 1) control (no treatment); 2) treatment with three cycles of dextran sodium sulfate (DSS); 3) weekly doses of 1,2-dimethylhydrazine (DMH) (20 mg/kg of mouse body weight) for twelve weeks; 4) a single dose of DMH followed by 3 cycles of DSS (DMH + DSS). Mice were observed for diarrhea, stool hemoccult, and weight loss and were sacrificed on day 153. Tumor area and number were counted. Colonic tissues were collected for Western blot and immunohistochemistry analyses. APNKO mice were more protected than WT mice from DSS induced colitis during first DSS cycle, but lost this protection during the second and the third DSS cycles. APNKO mice had significantly severe symptoms and showed greater number and larger area of tumors with higher immune cell infiltration and inflammation than WT mice. This result was further confirmed by proteomic study including pSTAT3, pAMPK and Cox-2 by western blot and Immunohistochemistry. Conclusively, APN deficiency contributes to inflammation-induced colon cancer. Hence, APN may play an important role in colorectal cancer prevention by modulating genes involved in chronic inflammation and tumorigenesis.  相似文献   

6.
The Western diet, rich in fat and red meat, predisposes for inflammatory bowel disease (IBD); however, little is known about mechanisms involved. Red meat contains high levels of heme, a well-known inducer of the cytoprotective enzyme heme oxygenase-1 (HO-1). Pharmacological induction of HO-1 ameliorates experimental colitis. We analyzed the effect of a westernized high-fat (HF) diet supplemented with heme on intestinal HO-1 expression and dextran sulfate sodium (DSS)-induced colitis.Mice were fed chow or HF diets for 2 weeks. In the second week, the HF diet was supplemented with or without 0.5 μmol/g heme. Subsequently, the 3 diet groups were given drinking water with or without 4% DSS to induce colitis.Significant body weight reduction was first observed after 4 days in the chow/DSS mice (?5±3%), whereas this was evident already after 2 days (?6±2%) in HF/DSS mice, showing increased weight loss compared to chow/DSS mice in the following days. Heme supplementation further aggravated DSS-induced weight loss in HF mice (?18±4% vs. ?7±5% for HF+heme/DSS vs. HF/DSS, P<.01). Heme increased HO-1 expression in the colon epithelium but decreased villin messenger RNA levels, indicating epithelial damage. In contrast, heme did not affect DSS-induced colon shortening and histological scores of epithelial damage and inflammation.A westernized diet accelerates DSS-induced weight loss in mice, which is further aggravated by heme, despite the induction of HO-1 in the colon epithelium. Our data warrant a detailed analysis of the association of (red) meat-containing diets and the development of IBD.  相似文献   

7.
Dietary supplementation with conjugated linoleic acid (CLA) has been proposed for weight management and to prevent gut inflammation. However, some animal studies suggest that supplementation with CLA leads to the development of nonalcoholic fatty liver disease. The aims of this study were to test the efficiency of CLA in preventing dextran sulfate sodium (DSS)-induced colitis, to analyze the effects of CLA in the liver function, and to access putative liver alterations upon CLA supplementation during colitis. So, C57BL/6 mice were supplemented for 3 weeks with either control diet (AIN-G) or 1% CLA-supplemented diet. CLA content in the diet and in the liver of mice fed CLA containing diet were accessed by gas chromatography. On the first day of the third week of dietary treatment, mice received ad libitum a 1.5%–2.5% DSS solution for 7 days. Disease activity index score was evaluated; colon and liver samples were stained by hematoxylin and eosin for histopathology analysis and lamina propria cells were extracted to access the profile of innate cell infiltrate. Metabolic alterations before and after colitis induction were accessed by an open calorimetric circuit. Serum glucose, cholesterol, triglycerides and alanine aminotransaminase were measured; the content of fat in liver and feces was also accessed. CLA prevented weight loss, histopathologic and macroscopic signs of colitis, and inflammatory infiltration. Mice fed CLA-supplemented without colitis induction diet developed steatosis, which was prevented in mice with colitis probably due to the higher lipid consumption as energy during gut inflammation. This result suggests that CLA is safe for use during gut inflammation but not at steady-state conditions.  相似文献   

8.
9.
10.
Inflammatory bowel disease (IBD) is an immunologically mediated disorder that is characterized by chronic, relapsing, and inflammatory responses. Dextran sulfate sodium (DSS)-induced experimental colitis in mice has been recognized as a useful model for human IBD and interleukin (IL)-1beta is a key cytokine in the onset of IBD. The purpose of the present study was to clarify which pro-inflammatory mediators are targeted by IL-1beta in mice with DSS-induced colitis. First, we found that DSS markedly induced IL-1beta production in both dose- and time-dependent manners (P < 0.05 and P < 0.01, respectively) in murine peritoneal macrophages (pMphi), while that of tumor necrosis factor-alpha was insignificant. Further, the expressions of mRNA and protein for IL-1beta were increased in colonic mucosa and pMphi from mice that received drinking water containing 5% DSS for 7 days (P < 0.01, each). In addition, the expressions of IL-6, granulocyte macrophage-colony stimulating factor, inducible nitric oxide synthase, and cyclooxygenase-2 mRNA were also time dependently increased (P < 0.01, each). Furthermore, administration of rIL-1beta (10 microg/kg, i.p.) significantly induced the expressions of IL-1beta and IL-6 mRNA in colonic mucosa from non-treated mice (P < 0.01). Anti-mIL-1beta antibody treatments (50 microg/kg, i.p.) attenuated DSS-induced body weight reduction and shortening of the colorectum (P < 0.05, each), and abrogated the expressions of IL-1beta and IL-6 mRNA in colonic mucosa (P < 0.01, each). Our results evidently support the previous findings that IL-1beta is involved in the development of DSS-induced experimental colitis in mice, and strongly suggest that IL-1beta targets itself and IL-6 for progressing colonic inflammation.  相似文献   

11.
The aim of this study is to examine the anti-inflammatory effect of Euphorbia supina (ES) ethanol extract in dextran sulfate sodium (DSS)-induced experimental colitis model. ES was per orally administered at different doses of 4 or 20 mg/kg body weight with 5% DSS in drinking water for 7 days. Twenty mg/kg of ES administration regulated body weight decrease, recovered colon length shortening, and increased disease activity index score and myeloperoxidase level in DSS-induced colitis. Histological features showed that 20 mg/kg of ES administration suppressed edema, mucosal damage, and the loss of crypts induced by DSS. Furthermore, ES suppressed the expressions of COX-2, iNOS, NF-kB, IkBα, pIkBα in colon tissue. These findings demonstrated a possible effect of amelioration of ulcerative colitis and could be clinically applied.  相似文献   

12.
Recent studies have demonstrated pleiotropic roles of pyruvate kinase isoenzyme type M2 (PKM2) in tumor progression. However, the precise mechanisms underlying the effects of PKM2 on esophageal squamous cell carcinoma (ESCC) metastasis and transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) remain to be established. In this study, we observed upregulation of PKM2 in ESCC tissues that was markedly associated with lymph node metastasis and poor prognosis. High PKM2 expression in tumor tissues frequently coincided with the high pSTAT3Tyr705 expression and low E-cadherin expression. Furthermore, altered PKM2 expression was significantly associated with proliferation, migration, and invasion of ESCC cells, in addition to expression patterns of EMT markers (Snail, E-cadherin, and vimentin) and pSTAT3Tyr705/STAT3 ratio. Overexpression of STAT3 significantly attenuated the effects of PKM2 knockdown on cell proliferation and motility as well as expression of pSTAT3 Tyr705 and EMT markers. Consistently, stable short hairpin RNA (shRNA)-mediated silencing of PKM2 reversed the effects of TGF-β1 treatment, specifically, upregulation of PKM2, phosphorylation of STAT3 at Tyr705, and increased EMT, migration, and invasion. We propose that PKM2 regulates cell proliferation, migration, and invasion via phosphorylation of STAT3 through TGF-β1-induced EMT. Our findings collectively provide mechanistic insights into the tumor-promoting role of PKM2, supporting its prognostic value and the therapeutic utility of PKM2 inhibitors as potential antitumor agents in ESCC.  相似文献   

13.
BACKGROUND: Overproduction of nitric oxide by the inducible form of nitric oxide synthase (iNOS) has been implicated in colitis. Different authors have postulated both toxic and protective effects of nitric oxide (NO) in the pathophysiology of active inflammation. The objective of this study was to examine the role of iNOS in experimental chronic colitis using iNOS-deficient mice. METHODS: For induction of colitis, mice received three cycles of 2% of dextran sodium sulfate (DSS) (M.W. 40,000) treatment in drinking water. The degree of colonic inflammation, leukocyte infiltration, and the expression of cell adhesion molecules were determined. INOS expression and nitrotyrosine were also determined by immunohistochemistry. RESULTS: After DSS treatment, a moderate colitis with marked cell infiltration was observed. Intense expression of iNOS was observed on infiltrating cells as well as on the colonic mucosal epithelium in these animals. In the iNOS-deficient mice, tissue damage was significantly diminished. No iNOS or nitrotyrosine staining was found in iNOS-deficient mice. The number of infiltrating cells and the expression of mucosal adressin cell adhesion molecule-1 were significantly attenuated in the DSS-treated colon of iNOS-deficient mice. CONCLUSION: Induction of iNOS seems to act as a critical toxic effector molecule in the pathogenesis of chronic colonic inflammation.  相似文献   

14.
Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.  相似文献   

15.
16.
17.
This study aimed to evaluate the microbial compositions and gene expression related to inflammation in dextran sodium sulfate (DSS)-induced acute colitis and the effect of mulberry supplementation. Male BALB/c mice received a diet supplemented with mulberry juice freeze-dried powder (MFP) or not for 3 weeks. After 3 weeks, the mice received water containing 5% (w/v) DSS or not for 1 week. The disease activity index score in mice fed MFP was significantly decreased. A significant decrease in Bifidobacterium spp. and the Clostridium perfringens subgroup was observed in mice not fed MFP. The number of goblet cell and NLRP6 expression were observed in mice fed a diet supplemented with MFP compared with mice not fed MFP. These results may indicate that mulberry mitigates DSS-induced acute colitis by a changing the gut microbial flora and by improving mucosal conditions.  相似文献   

18.
Previously, we reported that oral feeding of 1% green tea polyphenols (GTPs) aggravated the dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, we assessed the toxicity of 1% GTPs in several organs from normal and DSS-exposed mice. Sixty-two male ICR mice were initially divided into four groups. Non-treated group (group 1, n = 15) was given standard diet and water, GTPs (group 2, n = 15) received 1% GTPs in diet and water, DSS (group 3, n = 15) received diet and 5% DSS in water, and GTPs + DSS group (group 4, n = 17) received 1% GTPs in diet and 5% DSS in water. We found that group 4 significantly increased (P < 0.05) kidney weight, the levels of serum creatinine and thiobarbituric acid-reactive substances in both kidney and liver, as compared with those in group 3. The mRNA expression levels of antioxidant enzymes and heat-shock proteins (HSPs) in group 4 were lower than those of group 3. For instance, heme oxygenase-1 (HO-1), HSP27, and 90 mRNA in the kidney of group 4 were dramatically down-regulated as compared with those of group 3. Furthermore, 1% GTPs diet decreased the expression of HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO1) and HSP90 in kidney and liver of non-treated mice. Taken together, our results indicate that high-dose GTPs diet disrupts kidney functions through the reduction of antioxidant enzymes and heat-shock protein expressions in not only colitis but also non-treated ICR mice.  相似文献   

19.
20.
Goji berry (Lycium barbarum) exerts immune modulation and suppresses inflammation in vitro and in vivo. We hypothesized that Goji berry had beneficial effects on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice through suppressing inflammation. Six-week-old male C57BL/6 mice were supplemented with a standard AIN-93G diet with or without 1% (w/w) Goji berry for 4 weeks. Then, colitis was induced by supplementing 3% DSS in drinking water for 7 days, followed by 7 days of remission period to mimic ulcerative colitis symptoms. Goji berry supplementation ameliorated DSS-induced body weight loss, diminished diarrhea and gross bleeding, and resulted in a significantly decreased disease activity index, as well as DSS-associated colon shortening. Moreover, 30% mortality rate caused by DSS-induced colitis was avoided because of Goji berry supplementation. Histologically, Goji berry ameliorated colonic edema, mucosal damage and neutrophil infiltration into colonic intestinal tissue in response to DSS challenge, which was associated with decreased expression of chemokine (C-X-C motif) ligand 1 and monocyte chemoattractant protein-1, as well as inflammatory mediators interleukin-6 and cyclooxygenase-2. In conclusion, Goji supplementation confers protective effects against DSS­induced colitis, which is associated with decreased neutrophil infiltration and suppressed inflammation. Thus, dietary Goji is likely beneficial to inflammatory bowel disease patients as a complementary therapeutic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号