首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TAR DNA binding protein 43 (TDP-43) A315T mutation (TDP-43A315T) has been found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) as a disease causing mutation with enhanced protein aggregation, formation of protease-resistant fragments, and neurotoxicity. However, the molecular mechanisms for its pathogenic effects are largely unknown. In this study, we demonstrate that TDP-43A315T enhanced neuronal toxicity via activating endoplasmic reticulum (ER) stress-mediated apoptosis in SH-SY5Y cells. Moreover, autophagy was activated by overexpression of TDP-43A315T in a self-defensive manner to decrease neuronal toxicity. Inhibition of autophagy attenuates TDP-43A315T induced neuronal cell death. Furthermore, the expression levels of TDP-43, ER chaperone 78 kDa glucose-regulated protein (GRP-78), and autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3) in the skin tissues from ALS patients with TDP-43A315T mutation were markedly higher than those from the healthy control. Thus, our findings provide new molecular evidence for TDP-43A315T neuropathology. In addition, the pathological change in the skin tissues of the patients with TDP-43A315T mutation can be used as a quick diagnostic biomarker.  相似文献   

2.
Abnormal aggregates of transactive response DNA-binding protein-43 (TDP-43) and its hyperphosphorylated and N-terminal truncated C-terminal fragments (CTFs) are deposited as major components of ubiquitinated inclusions in most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). The mechanism underlying the contribution of TDP-43 to the pathogenesis of these neurodegenerative diseases remains unknown. In this study, we found that a 2-5-fold increase in TDP-43 expression over the endogenous level induced death of NSC34 motor neuronal cells and primary cortical neurons. TDP-43-induced death is associated with up-regulation of Bim expression and down-regulation of Bcl-xL expression. siRNA-mediated reduction of Bim expression attenuates TDP-43-induced death. Accumulated evidence indicates that caspases are activated in neurons of ALS and FTLD-U patients, and activated caspase-mediated cleavage of TDP-43 generates CTFs of TDP-43. Here, we further found that the ER (endoplasmic reticulum) stress- or staurosporine-mediated activation of caspases leads to cleavage of TDP-43 at Asp(89) and Asp(169), generating CTF35 (TDP-43-(90-414)) and CTF27 (TDP-43-(170-414)) in cultured neuronal cells. In contrast to TDP-43, CTF27 is unable to induce death while it forms aggregates. CTF35 was weaker than full-length TDP-43 in inducing death. A cleavage-resistant mutant of TDP-43 (TDP-43-D89E/D169E) showed stronger death-inducing activity than wild-type TDP-43. These results suggest that disease-related activation of caspases may attenuate TDP-43-induced toxicity by promoting TDP-43 cleavage.  相似文献   

3.
The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig''s disease) is a debilitating and universally fatal neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins TDP-43 and FUS are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant to human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms.Key words: TDP-43, FUS/TLS, yeast, ALS, FTLD-U, prion  相似文献   

5.
Given the critical role for TDP-43 in diverse neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), there has been a recent surge in efforts to understand the normal functions of TDP-43 and the molecular basis of dysregulation that occurs in TDP-43 proteinopathies. Here, we highlight recent findings examining TDP-43 molecular functions with particular emphasis on stress-mediated regulation of TDP-43 localization, putative downstream TDP-43 target genes and RNAs, as well as TDP-43 interacting proteins, all of which represent viable points of therapeutic intervention for ALS, FTLD-TDP and related proteinopathies. Finally, we review current mouse models of TDP-43 and discuss their similarities and potential relevance to human TDP-43 proteinopathies including ALS and FTLD-TDP.  相似文献   

6.
Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis (ALS), while wild-type TDP-43 is a pathological hallmark of patients with sporadic ALS and frontotemporal lobar degeneration (FTLD). Various in vitro and in vivo studies have also demonstrated toxicity of both mutant and wild-type TDP-43 to neuronal cells. To study the potential additional toxicity incurred by mutant TDP-43 in vivo, we generated mutant human TDP-43 (p.M337V) transgenic mouse lines driven by the Thy-1.2 promoter (Mt-TAR) and compared them in the same experimental setting to the disease phenotype observed in wild-type TDP-43 transgenic lines (Wt-TAR) expressing comparable TDP-43 levels. Overexpression of mutant TDP-43 leads to a worsened dose-dependent disease phenotype in terms of motor dysfunction, neurodegeneration, gliosis, and development of ubiquitin and phosphorylated TDP-43 pathology. Furthermore, we show that cellular aggregate formation or accumulation of TDP-43 C-terminal fragments (CTFs) are not primarily responsible for development of the observed disease phenotype in both mutant and wild-type TDP-43 mice.  相似文献   

7.
In amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, TAR DNA binding protein 43 (TDP-43) accumulates in the cytoplasm of affected neurons and glia, where it associates with stress granules (SGs) and forms large inclusions. SGs form in response to cellular stress, including endoplasmic reticulum (ER) stress, which is induced in both familial and sporadic forms of ALS. Here we demonstrate that pharmacological induction of ER stress causes TDP-43 to accumulate in the cytoplasm, where TDP-43 also associates with SGs. Furthermore, treatment with salubrinal, an inhibitor of dephosphorylation of eukaryotic initiation factor 2-α, a key modulator of ER stress, potentiates ER stress-mediated SG formation. Inclusions of C-terminal fragment TDP-43, reminiscent of disease-pathology, form in close association with ER and Golgi compartments, further indicating the involvement of ER dysfunction in TDP-43-associated disease. Consistent with this notion, over-expression of ALS-linked mutant TDP-43, and to a lesser extent wildtype TDP-43, triggers several ER stress pathways in neuroblastoma cells. Similarly, we found an interaction between the ER chaperone protein disulphide isomerase and TDP-43 in transfected cell lysates and in the spinal cords of mutant A315T TDP-43 transgenic mice. This study provides evidence for ER stress as a pathogenic pathway in TDP-43-mediated disease.  相似文献   

8.
9.
Almost all cases of sporadic amyotrophic lateral sclerosis (ALS), and some cases of the familial form, are characterised by the deposition of TDP-43, a member of a family of heteronuclear ribonucleoproteins (hnRNP). Although protein misfolding and deposition is thought to be a causative feature of many of the most prevalent neurodegenerative diseases, a link between TDP-43 aggregation and the dysfunction of motor neurons has yet to be established, despite many correlative neuropathological studies. We have investigated this relationship in the present study by probing the effect of altering TDP-43 aggregation behaviour in vivo by modulating the levels of molecular chaperones in a Drosophila model. More specifically, we quantify the effect of either pharmacological upregulation of the heat shock response or specific genetic upregulation of a small heat shock protein, CG14207, on the neurotoxicity of both TDP-43 and of its disease associated 25 kDa fragment (TDP-25) in a Drosophila model. Inhibition of the aggregation of TDP-43 by either method results in a partial reduction of its neurotoxic effects on both photoreceptor and motor neurons, whereas inhibition of the aggregation of TDP-25 results not only in a complete suppression of its toxicity but also its clearance from the brain in both neuronal subtypes studied. The results demonstrate, therefore, that aggregation plays a crucial role in mediating the neurotoxic effects of both full length and truncated TDP-43, and furthermore reveal that the in vivo propensity of these two proteins to aggregate and their susceptibility to molecular chaperone mediated clearance are quite distinct.  相似文献   

10.
Sun Z  Diaz Z  Fang X  Hart MP  Chesi A  Shorter J  Gitler AD 《PLoS biology》2011,9(4):e1000614
TDP-43 and FUS are RNA-binding proteins that form cytoplasmic inclusions in some forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Moreover, mutations in TDP-43 and FUS are linked to ALS and FTLD. However, it is unknown whether TDP-43 and FUS aggregate and cause toxicity by similar mechanisms. Here, we exploit a yeast model and purified FUS to elucidate mechanisms of FUS aggregation and toxicity. Like TDP-43, FUS must aggregate in the cytoplasm and bind RNA to confer toxicity in yeast. These cytoplasmic FUS aggregates partition to stress granule compartments just as they do in ALS patients. Importantly, in isolation, FUS spontaneously forms pore-like oligomers and filamentous structures reminiscent of FUS inclusions in ALS patients. FUS aggregation and toxicity requires a prion-like domain, but unlike TDP-43, additional determinants within a RGG domain are critical for FUS aggregation and toxicity. In further distinction to TDP-43, ALS-linked FUS mutations do not promote aggregation. Finally, genome-wide screens uncovered stress granule assembly and RNA metabolism genes that modify FUS toxicity but not TDP-43 toxicity. Our findings suggest that TDP-43 and FUS, though similar RNA-binding proteins, aggregate and confer disease phenotypes via distinct mechanisms. These differences will likely have important therapeutic implications.  相似文献   

11.
12.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.  相似文献   

13.
Fu  Jie  Peng  Lilei  Wang  Weijun  He  Haiping  Zeng  Shan  Chen  Thomas C.  Chen  Yangmei 《Neurochemical research》2019,44(11):2517-2526

Endoplasmic reticulum (ER) stress has been indicated to be involved in the pathogenesis of epilepsy. Sodium valproate (VPA), one of the most commonly used antiepileptic drugs, is reported to regulate ER stress in many neurological diseases. However, the effect of VPA on ER stress in epilepsy remains unclear. The current study was performed to investigate the role of ER stress in the neuroprotection of VPA against seizure induced by pentylenetetrzole (PTZ). Our results showed that VPA treatment could inhibit the increased expressions of ER stress proteins (GRP78 and CHOP), and significantly reduce neuronal apoptosis in the PTZ-induced experimental seizure model. In addition, Salubrinal, an ER stress inhibitor, was used as a positive control, and exhibited neuroprotective effects via inhibiting excessive ER stress in the seizure model, which further supported that the inhibition in ER stress by VPA treatment could exert neuroprotection in seizures. In summary, our work demonstrated for the first time that ER stress was involved in the neuroprotective potential of VPA for seizures.

  相似文献   

14.
15.
Walker AK  Atkin JD 《IUBMB life》2011,63(9):754-763
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the misfolding and aggregation of distinct proteins in affected tissues, however, the pathogenic cause of disease remains unknown. Recent evidence indicates that endoplasmic reticulum (ER) stress plays a central role in ALS pathogenesis. ER stress activates the unfolded protein response (UPR), a homeostatic response to misfolded proteins. The UPR is initially protective by up-regulation of specific ER stress-regulated genes and inhibition of general protein translation. However, long-term ER stress leads to cell death via apoptotic signaling, thus providing a link to neurodegeneration. Activation of the UPR is one of the earliest events in affected motor neurons of transgenic rodent models expressing ALS-linked mutant superoxide dismutase 1 (SOD1). Recently, genetic manipulation of ER stress in several different SOD1 mouse models was shown to alter disease onset and progression, implicating an active role for the UPR in disease mechanisms. Furthermore, mutations to vesicle-associated membrane protein-associated protein B (VAPB), an ER transmembrane protein involved in ER stress regulation, also cause some cases of familial ALS. ER stress also occurs in spinal cord tissues of human sporadic ALS patients, and recent evidence suggests that perturbation of the ER could occur in ALS cases associated with TAR DNA binding protein 43 (TDP-43), fused in sarcoma (FUS) and valosin containing protein (VCP). Together these findings implicate ER stress as a potential upstream mechanism involved in both familial and sporadic forms of ALS.  相似文献   

16.
Transactive response DNA-binding protein 43 kD (TDP-43) is an aggregation-prone prion-like domain-containing protein and component of pathological intracellular aggregates found in most amyotrophic lateral sclerosis (ALS) patients. TDP-43 oligomers have been postulated to be released and subsequently nucleate TDP-43 oligomerization in recipient cells, which might be the molecular correlate of the systematic symptom spreading observed during ALS progression. We developed a novel protein complementation assay allowing quantification of TDP-43 oligomers in living cells. We demonstrate the exchange of TDP-43 between cell somata and the presence of TDP-43 oligomers in microvesicles/exosomes and show that microvesicular TDP-43 is preferentially taken up by recipient cells where it exerts higher toxicity than free TDP-43. Moreover, studies using microfluidic neuronal cultures suggest both anterograde and retrograde trans-synaptic spreading of TDP-43. Finally, we demonstrate TDP-43 oligomer seeding by TDP-43–containing material derived from both cultured cells and ALS patient brain lysate. Thus, using an innovative detection technique, we provide evidence for preferentially microvesicular uptake as well as both soma-to-soma “horizontal” and bidirectional “vertical” synaptic intercellular transmission and prion-like seeding of TDP-43.  相似文献   

17.
18.
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOD1 itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.  相似文献   

20.
Neuronal and glial deposition of misfolded, proteolytically processed, polyubiquitinated and abnormally phosphorylated C-terminal fragments (CTFs) of the TAR DNA binding protein-43 (TDP-43) is a pathological hallmark of frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U) and certain cases of amyotrophic lateral sclerosis. We demonstrate that TDP-43 can be proteolytically processed by caspases upon induction of apoptosis to a major 35 kDa and a minor 25 kDa CTF. These fragments are initially soluble, but over time they accumulate as insoluble and pathologically phosphorylated derivatives. However, proteolytic processing appears not to be absolutely required for the deposition of insoluble TDP-43 species, since a caspase resistant mutant of TDP-43 is also converted into insoluble species. Phosphorylation at S409/410 apparently occurs late during the conversion of soluble to insoluble TDP-43, suggesting that phosphorylation is not a prerequisite for aggregation. Loss of function of the progranulin (PGRN) gene causes FTLD-U with TDP-43 positive inclusions and has been suggested to lead to caspase activation and subsequent TDP-43 processing. However, siRNA-mediated knockdown of PGRN in cell culture as well as a PGRN gene knockout in mice failed to cause the formation of the disease characterizing CTFs of TDP-43. Our findings therefore suggest that caspase-mediated processing generates CTFs of similar biochemical properties as those occurring in nuclear and cytoplasmic deposits of FTLD-U patients independent of PGRN levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号