首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study analyses the effect of eugenol, arecoline and vanillic acid alone and in combination with two oral hypoglycemic drugs (OHD), namely, metformin and 2,4-thiazolodinedione (THZ), on 2-deoxyglucose (2DG) uptake in L6 myotubes. 2DG uptake in L6 myotubes was determined using an enzymatic assay developed by Yamamoto et al. (2006). Lipid content inside the cells has been estimated with oil red O assay. The absorption, distribution, metabolism, and excretion (ADME) and drug likeness properties of these phytochemicals are estimated using software QikProp®. All the three phytochemicals enhance 2DG uptake both in time- and dose-dependent manner. Eugenol and arecoline enhances 2DG uptake synergistically with both the OHD; whereas vanillic acid showing partly synergy with THZ and antagonistic activity with metformin on 2DG uptake. Eugenol and arecoline significantly increase the expressions of the glucose transporter type 4 (GLUT4) and phosphoinositide 3-kinase (PI3K) genes, but not the peroxisome proliferator-activated receptor (PPAR) gamma. Whereas vanillic acid does not has any significant effect on the expressions of these genes, the ADME results indicate that these phytochemicals are satisfying all the conditions to have a good oral bioavailability. These findings suggest that these phytochemicals can replace the commercial drugs in part, which could lead to a reduction in toxicity and side effects caused by the later as well as reduce the secondary complications.  相似文献   

2.
The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.  相似文献   

3.
Evidence from both epidemiological studies and basic research suggests that obesity and osteoporosis are interrelated. Though there is an increase in the prevalence of these disorders, a limited number of treatments are available, one of the reasons being the complexity of the pathways involved and difficulty in identifying a single molecular target. Due to adverse effects of pharmaceuticals, intake of herbal drugs by patients without a physician's recommendation is increasing globally. Lack of success with targeted monotherapy has encouraged scientists to determine whether combinations of phytochemicals that interfere with numerous cell-signaling pathways can be a more effective approach to treat complex diseases. For example, evidence is emerging that specific combinations of phytochemicals are far more effective than single compounds in decreasing adipogenesis and promoting bone formation. Since multiple pathways are dysfunctional in obesity and osteoporosis, an ideal approach for preventing and treating these diseases may be to use a combination of phytochemicals to address several targets simultaneously.  相似文献   

4.
In pharmacology, it is essential to identify the molecular mechanisms of drug action in order to understand adverse side effects. These adverse side effects have been used to infer whether two drugs share a target protein. However, side-effect similarity of drugs could also be caused by their target proteins being close in a molecular network, which as such could cause similar downstream effects. In this study, we investigated the proportion of side-effect similarities that is due to targets that are close in the network compared to shared drug targets. We found that only a minor fraction of side-effect similarities (5.8 %) are caused by drugs targeting proteins close in the network, compared to side-effect similarities caused by overlapping drug targets (64%). Moreover, these targets that cause similar side effects are more often in a linear part of the network, having two or less interactions, than drug targets in general. Based on the examples, we gained novel insight into the molecular mechanisms of side effects associated with several drug targets. Looking forward, such analyses will be extremely useful in the process of drug development to better understand adverse side effects.  相似文献   

5.
6.
7.
Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of “rich fractions,” in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine.  相似文献   

8.
BackgroundAlthough great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy.PurposeThis review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications.MethodsWe obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects.ResultsRepresentative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values.ConclusionThis review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.  相似文献   

9.
BackgroundLongstanding, successful use of combinations of phytopharmaceuticals in traditional Chinese medicine (TCM) has caught the attention of several pharmacologists to natural medicines. However, the development and popularisation of TCM is mainly limited because of the unavailability of reports clarifying the mechanisms of action and pharmacologically active ingredients in such formulations. Previous studies on natural medicines have mostly focused on their dominant components using forward pharmacology which often neglects trace components. It is necessary to assess the pharmacological and therapeutic superiority of many such trace components in comparison with single constituents.PurposeIn this study, we aimed to propose a new pharmacological research strategy for TCM. In particular, we presented the possibility that the effective mechanism of action of trace components of TCM is based on synthetic lethality. We sincerely hope to explore this theory further.MethodWe obtained retrieve published research information related to synthetic lethality, phytochemicals and Chinese medicine from PubMed and Google scholar. Based on the inclusion criteria, 71 studies were selected and discussed in this review.ResultsAs an interaction among genes, synthetic lethality can amplify co-regulatory biological effects exponentially. Synthetic strategies have been successfully applied for research and development of anti-tumour agents, including poly ADP-ribose polymerase inhibitors and clinical combination of chemotherapeutic agents for efficacy enhancement and toxicity reduction. TCM drugs contain several secondary metabolites to combat environmental stresses, providing a multi-component basis for corresponding synergistic targets. Therefore, we aimed to study whether this method could be used to identify active components present in trace amounts in TCM drugs. Based on a reverse concept of target–component–effect and identified synergistic targets, we explored the mechanisms of action of weakly active components present in trace amounts in TCM drugs to assess combinations of potential synergistic components.ConclusionThis pattern of synthetic lethality not only elucidated the mechanisms of action of TCM drugs from a new perspective but also inspired future studies on discovering naturally occurring active components.  相似文献   

10.
Ionizing radiation (IR)-induced cellular damage is implicated in carcinogenesis as well as therapy of cancer. Advances in radiation therapy have led to the decrease in dosage and localizing the effects to the tumor; however, the development of radioresistance in cancer cells and radiation toxicity to normal tissues are still the major concerns. The development of radioresistance involves several mechanisms, including the activation of mitogenic and survival signaling, induction of DNA repair, and changes in redox signaling and epigenetic regulation. The current strategy of combining radiation with standard cytotoxic chemotherapeutic agents can potentially lead to unwanted side effects due to both agents. Thus agents are needed that could improve the efficacy of radiation killing of cancer cells and prevent the damage to normal cells and tissues caused by the direct and bystander effects of radiation, without have its own systemic toxicity. Chemopreventive phytochemicals, usually non-toxic agents with both cancer preventive and therapeutic activities, could rightly fit in this approach. In this regard, naturally occurring compounds, including curcumin, parthenolide, genistein, gossypol, ellagic acid, withaferin, plumbagin and resveratrol, have shown considerable potential. These agents suppress the radiation-induced activation of receptor tyrosine kinases and nuclear factor-κB signaling, can modify cell survival and DNA repair efficacy, and may potentiate ceramide signaling. These radiosensitizing and counter radioresistance mechanisms of phytochemicals in cancer cells are also associated with changes in epigenetic gene regulation. Because radioresistance involves multiple mechanisms, more studies are needed to discover novel phytochemicals having multiple mechanisms of radiosensitization and to overcome radioresistance of cancer cells. Pre-clinical studies are needed to address the appropriate dosage, timing, and duration of the application of phytochemicals with radiation to justify clinical trials. Nonetheless, some phytochemicals in combination with IR may play a significant role in enhancing the therapeutic index of cancer treatment.  相似文献   

11.
In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin) and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin) against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062). The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals).  相似文献   

12.
The therapeutic equivalence of the multi-herbal drug combination STW 5 (Iberogast ®) with two synthetic standard drugs can be explained by an additive or overadditive pharmacological synergism. A review of the different chemical constituents contained in this fixed combination of nine herbal drug extracts and their dominant mechanisms of action shows that they correlate very well with the clinically relevant overall pharmacological profile of the multi-herbal drug combination. This comprises modulatory effects on gastro-intestinal motility, anti-inflammatory action, inhibitory effects on gastric acid production and anti-oxidative and radical-inhibiting properties. As a multi-drug preparation with a multitude of therapeutic targets relevant in functional gastrointestinal diseases, its pharmacological profile of action in accordance with the multi-target principle.  相似文献   

13.
Alzheimer''s disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.  相似文献   

14.
Phytochemicals and Insect Control: An Antifeedant Approach   总被引:1,自引:0,他引:1  
Plants based pest control agents have long been touted as alternatives to synthetic chemicals for integrated pest management. Such phytochemicals reputedly pose little threat to the environment or to human health. Bioactivity of plant-based compounds is well documented in literature and is a subject of increasing importance. An antifeedant approach for insect control has been extensively studied, at least at laboratory level, though only a handful of plant-based compounds are currently used in agriculture. The known active plant-based antifeedants belong to groups like chromenes, polyacetylenes, saponins, quassinoids, cucurbitacins, cyclopropanoid acids, phenolics, alkaloids, various types of terpenes and their derivatives etc., and each insect species may process these allomones in a thoroughly idiosyncratic way, so that the same compound may have very different fates and consequences in different species of insects, thus pointing to different mechanisms involved in antifeedant action. It can also be visualized that insect feeding deterrents may be perceived either by stimulation of specialized deterrent receptors or by distortion of the normal function of neurons, which perceive phagostimulating compounds. Some plant antifeedants influence the feeding activity through a combination of these two principal modes of action. Only a few highly active antifeedants have been looked into from a commercial point of view, which makes it impossible to systemize or to predict any molecular motifs in feeding inhibition. Structure activity relationship studies also do not point to any generalization. “Mix and Match” systems may help in developing a cocktail of feeding inhibitors that can be used in developing a customized formulation against a specific category of pests. Application of such products will be broad and will not be limited to targeted pests and to plant parts. Decreased deterrence resulting from habituation has been suggested that could pose different implications for pest management than does decreased deterrence resulting from increased tolerance to toxic substances. Genetically modified plants, which could produce the active antifeedant substances in amounts high enough to protect the plants from further herbivorous damage, could be a possibility in the future.  相似文献   

15.
Chemoprevention is one of the cancer prevention approaches wherein natural/synthetic agent(s) are prescribed with the aim to delay or disrupt multiple pathways and processes involved at multiple steps, i.e., initiation, promotion, and progression of cancer. Amongst environmental chemopreventive compounds, diet/beverage-derived components are under evaluation, because of their long history of exposure to humans, high tolerability, low toxicity, and reported biological activities. This compilation briefly covers and compares the available evidence on chemopreventive efficacy and probable mechanism of chemoprevention by selected dietary phytochemicals(capsaicin, curcumin, diallyl sulphide, genistein, green/black tea polyphenols, indoles, lycopene, phenethyl isocyanate, resveratrol, retinoids and tocopherols) in experimental systems and clinical trials. All the dietary phytochemicals covered in this review have demonstrated chemopreventive efficacy against spontaneous or carcinogen-induced experimental tumors and/or associated biomarkers and processes in rodents at several organ sites. The observed anti-initiating, anti-promoting and anti-progression activity of dietary phytochemicals in carcinogen-induced experimental models involve phytochemical-mediated redox changes, modulation of enzymes and signaling kinases resulting to effects on multiple genes and cell signaling pathways. Results from clinical trials using these compounds have not shown them to be chemopreventive. This may be due to our:(1) inability to reproduce the exposure conditions, i.e., levels, complexity, other host and lifestyle factors; and(2) lack of understanding about the mechanisms of action and agent-mediated toxicity in several organs and physiological processes in the host. Current research efforts in addressing the issues of exposure conditions, bioavailability, toxicity and the mode of action of dietary phytochemicals may help address the reason for observed mismatch that may ultimately lead to identification of new chemopreventive agents for protection against broad spectrum of exposures.  相似文献   

16.
Antibiotics have been effective in treating infectious diseases, but resistance to these drugs has led to the emergence of new and the reemergence of old infectious diseases. One strategy employed to overcome these resistance mechanisms is the use of combination of drugs, such as β-lactams together with β-lactamase inhibitors. Several plant extracts have exhibited synergistic activity against microorganisms. This review describes in detail, the observed synergy and mechanism of action between natural products including flavonoids and essential oils and synthetic drugs in effectively combating bacterial, fungal and mycobacterial infections. The mode of action of combination differs significantly than that of the same drugs acting individually; hence isolating a single component may lose its importance thereby simplifying the task of pharma industries.  相似文献   

17.
Sodium nucleinate, when injected into mice in combination with killed E. coli or prodigiozan, caused a decrease in side effects produced by the vaccine or polysaccharide. The combined injection of sodium nucleinate and prodigiozan in doses, ineffective if introduced separately, was accompanied by the potentiation of their tachyphylactic action. The use of sodium nucleinate in combination with polyvinylprrolidone (hemodez) prolonged the tachyphylactic action of sodium nucleinate and increased its effectiveness. The proposed principle is supposed to be suitable for decreasing the reactogenicity of bacterial vaccines and polysaccharides.  相似文献   

18.
Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergistic effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug-indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.  相似文献   

19.
Phytochemicals are a rich source of anticancer drugs and chemopreventive agents. Several of these chemicals appear to exert at least some of their effects through interactions with topoisomerase II, an essential enzyme that regulates DNA supercoiling and removes knots and tangles from the genome. Topoisomerase II-active phytochemicals function by stabilizing covalent protein-cleaved DNA complexes that are intermediates in the catalytic cycle of the enzyme. As a result, these compounds convert topoisomerase II to a cellular toxin that fragments the genome. Because of their mode of action, they are referred to as topoisomerase II poisons as opposed to catalytic inhibitors. The first sections of this article discuss DNA topology, the catalytic cycle of topoisomerase II, and the two mechanisms (interfacial vs. covalent) by which different classes of topoisomerase II poisons alter enzyme activity. Subsequent sections discuss the effects of several phytochemicals on the type II enzyme, including demethyl-epipodophyllotoxins (semisynthetic anticancer drugs) as well as flavones, flavonols, isoflavones, catechins, isothiocyanates, and curcumin (dietary chemopreventive agents). Finally, the leukemogenic potential of topoisomerase II-targeted phytochemicals is described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号