首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Mesenchymal stromal cells (MSC) are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS) is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL) has proven to be a suitable alternative to FBS for expansion of human MSC.

Hypothesis and Objectives

We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1) isolation, 2) proliferation, 3) spontaneous differentiation, and 4) directed differentiation.

Results

1) Medium with 10% PL was unable to isolate MSC. 2) MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT) or 30% (BM) enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3) Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4) MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis.

Conclusions/Significance

Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects.  相似文献   

2.

Background

In our earlier reports, we showed that downregulation of uPA and uPAR inhibited glioma tumor angiogenesis in SNB19 cells, and intraperitoneal injection of a hairpin shRNA expressing plasmid targeting uPA and uPAR inhibited angiogenesis in nude mice. The exact mechanism by which inhibition of angiogenesis takes place is not clearly understood.

Methodology/Principal Findings

In the present study, we have attempted to investigate the mechanism by which uPA/uPAR downregulation by shRNA inhibits angiogenesis in endothelial and glioblastoma cell lines. uPA/uPAR downregulation by shRNA in U87 MG and U87 SPARC co-cultures with endothelial cells inhibited angiogenesis as assessed by in vitro angiogenesis assay and in vivo dorsal skin-fold chamber model in nude mice. Protein antibody array analysis of co-cultures of U87 and U87 SPARC cells with endothelial cells treated with pU2 (shRNA against uPA and uPAR) showed decreased angiogenin secretion and angiopoietin-1 as well as several other pro-angiogenic molecules. Therefore, we investigated the role of angiogenin and found that nuclear translocation, ribonucleolytic and 45S rRNA synthesis, which are all critical for angiogenic function of angiogenin, were significantly inhibited in endothelial cells transfected with uPA, uPAR and uPA/uPAR when compared with controls. Moreover, uPA and uPAR downregulation significantly inhibited the phosphorylation of Tie-2 receptor and also down regulated FKHR activation in the nucleus of endothelial cells via the GRB2/AKT/BAD pathway. Treatment of endothelial cells with ruPA increased angiogenin secretion and angiogenin expression as determined by ELISA and western blotting in a dose-dependent manner. The amino terminal fragment of uPA down regulated ruPA-induced angiogenin in endothelial cells, thereby suggesting that uPA plays a critical role in positively regulating angiogenin in glioblastoma cells.

Conclusions/Significance

Taken together, our results suggest that uPA/uPAR downregulation suppresses angiogenesis in endothelial cells induced by glioblastoma cell lines partially by downregulation of angiogenin and by inhibition of the angiopoietin-1/AKT/FKHR pathway.  相似文献   

3.

Background

HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA) with its cell surface receptor (uPAR) has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA). By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles.

Results

uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA.

Conclusions

These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed at interfering with the partitioning of virion budding between intra-cytoplasmic vesicles and plasma membrane in infected human macrophages.  相似文献   

4.

Objective

Atherosclerosis, a chronic inflammatory disease, arises from metabolic disorders and is driven by inappropriate recruitment and proliferation of monocytes / macrophages and vascular smooth-muscle-cells. The receptor for the urokinase-type plasminogen activator (uPAR, Plaur) regulates the proteolytic activation of plasminogen. It is also a coactivator of integrins and facilitates leukocyte-endothelial interactions and vascular smooth-muscle-cell migration. The role of uPAR in atherogenesis remains elusive.

Methods and Results

We generated C57Bl6/J low-density lipoprotein receptor (LDL) and uPAR double knockout (uPAR-/-/LDLR-/-) mice to test the role of uPAR in two distinct atherosclerosis models. In LDLR-/- mice, hepatic overexpression following hydrodynamic transfection of soluble uPAR that competes with endogenous membrane-bound uPAR was performed as an interventional strategy. Aortic root atherosclerotic lesions induced by feeding a high-fat diet were smaller and comprised less macrophages and vascular smooth-muscle-cells in double knockout mice and animals overexpressing soluble uPAR when compared to controls. In contrast, lesion size, lipid-, macrophage-, and vascular smooth muscle cell content of guide-wire-induced intima lesions in the carotid artery were not affected by uPAR deficiency. Adhesion of uPAR-/--macrophages to TNFα-stimulated endothelial cells was decreased in vitro accompanied by reduced VCAM-1 expression on primary endothelial cells. Hepatic overexpression of soluble full-length murine uPAR in LDLR-/- mice led to a reduction of diet-induced atherosclerotic lesion formation and monocyte recruitment into plaques. Ex vivo incubation with soluble uPAR protein also inhibited adhesion of macrophages to TNFα-stimulated endothelial cells in vitro.

Conclusion

uPAR-deficiency as well as competitive soluble uPAR reduced diet-promoted but not guide-wire induced atherosclerotic lesions in mice by preventing monocyte recruitment and vascular smooth-muscle-cell infiltration. Soluble uPAR may represent a therapeutic tool for the modulation of hyperlipidemia-associated atherosclerotic lesion formation.  相似文献   

5.

Background

The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1.

Methodology/Principal Findings

In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments.

Conclusions/Significance

These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.  相似文献   

6.

Background

Meningiomas are the most commonly occurring intracranial tumors and account for approximately 15−20% of central nervous system tumors. Surgery and radiation therapy is a common treatment for brain tumors, however, patients whose tumors recur after such treatments have limited therapeutic options. Earlier studies have reported important roles of uPA, uPAR and cathepsin B in tumor progression.

Methodology/Principal Findings

In the present study, we examined the therapeutic significance of RNAi-mediated simultaneous down regulation of these proteolytic networks using two bicistronic siRNA constructs, pUC (uPAR/cathepsin B) and pU2 (uPA/uPAR) either alone or in combination with radiation in two different meningioma cell lines. Transfection of meningioma cells with pUC and pU2 significantly reduced angiogenesis as compared to control treatment both in vitro and in vivo nude mice model. This effect is mediated by inhibiting angiogenic molecules (Ang-1, Ang-2 and VEGF). Expression of focal adhesion kinase (FAK) is elevated in malignant meningioma, yet the role of intrinsic FAK activity in promoting tumor progression remains undefined. We found that pUC treatment reduced FAK phosphorylation at Y925 more efficiently compared to pU2 treatment. In immunoprecipitation assay, we found pronounced reduction of FAK (Y925) interaction with Grb2 in meningioma cells transfected with pUC with and without irradiation. Transient over-expression of uPAR and cathepsin B by full length uPAR/cathepsin B (FLpU/C) in pUC transfected meningioma cells promoted vascular phenotype, rescued expression of Ang-1, Ang-2, VEGF, FAK (Y925) and Grb2 both in vitro and in vivo mice model.

Conclusion/Significance

These studies provide the first direct proof that bicistronic siRNA construct for uPAR and cathepsin B (pUC) reduces Y925-FAK activity and this inhibition is rescued by overexpression of both uPAR and cathepsin B which clearly demonstrates that pUC could thus be a potential therapeutic approach as an anti-angiogenic agent in meningioma.  相似文献   

7.

Background

Despite effective radiotherapy for the initial stages of cancer, several studies have reported the recurrence of various cancers, including medulloblastoma. Here, we attempt to capitalize on the radiation-induced aggressive behavior of medulloblastoma cells by comparing the extracellular protease activity and the expression pattern of molecules, known to be involved in cell adhesion, migration and invasion, between non-irradiated and irradiated cells.

Methodology/Principal Findings

We identified an increase in invasion and migration of irradiated compared to non-irradiated medulloblastoma cells. RT-PCR analysis confirmed increased expression of uPA, uPAR, focal adhesion kinase (FAK), N-Cadherin and integrin subunits (e.g., α3, α5 and β1) in irradiated cells. Furthermore, we noticed a ∼2-fold increase in tyrosine phosphorylation of FAK in irradiated cells. Immunoprecipitation studies confirmed increased interaction of integrin β1 and FAK in irradiated cells. In addition, our results show that overexpression of uPAR in cancer cells can mimic radiation-induced activation of FAK signaling. Moreover, by inhibiting FAK phosphorylation, we were able to reduce the radiation-induced invasiveness of the cancer cells. In this vein, we studied the effect of siRNA-mediated knockdown of uPAR on cell migration and adhesion in irradiated and non-irradiated medulloblastoma cells. Downregulation of uPAR reduced the radiation-induced adhesion, migration and invasion of the irradiated cells, primarily by inhibiting phosphorylation of FAK, Paxillin and Rac-1/Cdc42. As observed from the immunoprecipitation studies, uPAR knockdown reduced interaction among the focal adhesion molecules, such as FAK, Paxillin and p130Cas, which are known to play key roles in cancer metastasis. Pretreatment with uPAR shRNA expressing construct reduced uPAR and phospho FAK expression levels in pre-established medulloblastoma in nude mice.

Conclusion/Significance

Taken together, our results show that radiation enhances uPAR-mediated FAK signaling and by targeting uPAR we can inhibit radiation-activated cell adhesion and migration both in vitro and in vivo.  相似文献   

8.

Background

Scrub typhus is a leading cause of serious febrile illness in rural Southeast Asia. The causative agent, Orientia tsutsugamushi, is an obligate intracellular bacterium that is transmitted to humans by the bite of a Leptotrombidium mite. Research into the basic mechanisms of cell biology and pathogenicity of O. tsutsugamushi has lagged behind that of other important human pathogens. One reason for this is that O. tsutsugamushi is an obligate intracellular bacterium that can only be cultured in mammalian cells and that requires specific methodologies for propagation and analysis. Here, we have performed a body of work designed to improve methods for quantification, propagation, purification and long-term storage of this important but neglected human pathogen. These results will be useful to other researchers working on O. tsutsugamushi and also other obligate intracellular pathogens such as those in the Rickettsiales and Chlamydiales families.

Methodology

A clinical isolate of O. tsutsugamushi was grown in cultured mouse embryonic fibroblast (L929) cells. Bacterial growth was measured using an O. tsutsugamushi-specific qPCR assay. Conditions leading to improvements in viability and growth were monitored in terms of the effect on bacterial cell number after growth in cultured mammalian cells.

Key results

  • Development of a standardised growth assay to quantify bacterial replication and viability in vitro.
  • Quantitative comparison of different DNA extraction methods.
  • Quantification of the effect on growth of FBS concentration, daunorubicin supplementation, media composition, host cell confluence at infection and frequency of media replacement.
  • Optimisation of bacterial purification including a comparison of host cell lysis methods, purification temperature, bacterial yield calculations and bacterial pelleting at different centrifugation speeds.
  • Quantification of bacterial viability loss after long term storage and freezing under a range of conditions including different freezing buffers and different rates of freezing.

Conclusions

Here we present a standardised method for comparing the viability of O. tsutsugamushi after purification, treatment and propagation under various conditions. Taken together, we present a body of data to support improved techniques for propagation, purification and storage of this organism. This data will be useful both for improving clinical isolation rates as well as performing in vitro cell biology experiments.  相似文献   

9.

Background

Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization).

Methodology/Principal Findings

Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points.

Conclusion/Significance

These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.  相似文献   

10.

Background & Aims

The intestinal epithelium is the first line of defense against enteric pathogens. We investigated the response of small intestinal and colonic crypt cultures to a panel of toll-like receptor ligands to assess the impact of microbial pattern recognition on epithelial growth.

Methods

Primary murine jejunal enteroids and colonoids were cultured with lipopeptide Pam3CSK4, lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (Poly I:C) for 4 to 6 days. Surface area, budding and survival were assessed. Proliferation and numbers of lysozyme positive cells were quantified by flow cytometry. Gene expression was assessed by Nanostring and qRT-PCR.

Results

Exposure to Pam3CSK4 and LPS had minimal impact on either enteroids or colonoids. In contrast, Poly I:C increased the surface area of enteroids, while colonoids demonstrated decreased budding. Survival was decreased by Poly I:C in enteroids but not in colonoids. Both enteroids and colonoids exhibited upregulated gene expression of chemokines, but these were increased in magnitude in enteroids. Decreases in gene expression associated with epithelial differentiation and lysozyme positive cells were more apparent in enteroids than in colonoids. Baseline gene expression between enteroids and colonoids differed markedly in levels of stem cell and inflammatory markers. The changes in morphology induced by Poly I:C were mediated by the toll-like receptor adaptor molecule 1 (Ticam1) in enteroids but not in colonoids.

Conclusions

Poly I:C alters the molecular program of epithelial cells and shifts from absorption and digestion towards defense and inflammation. Diversity of responses to microbial patterns in enteroids and colonoids may underlie differences in susceptibility to infection along the intestinal tract.  相似文献   

11.

Background

Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal) pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria.

Methods

To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days.

Results

We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response was primarily neutrophilic. The presence of allergic inflammation did not significantly alter the neutrophilic response to the lysate, and did not affect the induced bacterial killing within the lungs.

Conclusion

These results suggest that allergic airway inflammation neither promotes nor inhibits progression of pneumococcal lung infection in mice, nor does it influence the successful induction of stimulated innate resistance to bacteria.  相似文献   

12.

Background

The urokinase plasminogen activator receptor (uPAR) is associated with poor prognosis in oral squamous cell carcinoma (OSCC), and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells’ expression level of uPAR affected the activity of gelatinolytic enzymes.

Methods

The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM) proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography.

Results

We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes.

Conclusions

Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the regulation of posttranslational modification of uPAR.  相似文献   

13.

Aims

To isolate and characterise phage which could lyse P. acnes and to formulate the phage into a delivery form for potential application in topical treatment of acne infection.

Methods and Results

Using standard phage isolation techniques, ten phage capable of lysing P. acnes were isolated from human skin microflora. Their genomes showed high homology to previously reported P. acnes phage. These phage were formulated into cetomacrogol cream aqueous at a concentration of 2.5x108 PFU per gram, and shown to lyse underlying P. acnes cells grown as lawn cultures. These phage formulations remained active for at least 90 days when stored at four degrees Celsius in a light protected container.

Conclusions

P. acnes phage formulated into cetomacrogol cream aqueous will lyse surrounding and underlying P. acnes bacteria, and are effective for at least 90 days if stored appropriately.

Significance and Impact of the Study

There are few reports of phage formulation into semi solid preparations for application as phage therapy. The formulation method described here could potentially be applied topically to treat human acne infections. The potential exists for this model to be extended to other phage applied to treat other bacterial skin infections.  相似文献   

14.

Background

Cancer stem cells represent a population of immature tumor cells found in most solid tumors. Their peculiar features make them ideal models for studying drug resistance and sensitivity. In this study, we investigated whether cancer stem cells isolation and in vitro sensitivity assay are feasible in a clinical setting.

Methods

Cancer stem cells were isolated from effusions or fresh cancer tissue of 23 patients who progressed after standard therapy failure. Specific culture conditions selected for immature tumor cells that express markers of stemness. These cells were exposed in vitro to chemotherapeutic and targeted agents.

Results

Cancer stem cells were extracted from liver metastases in 6 cases (25%), lung nodules in 2 (8%), lymph node metastases in 3 (12.5%) and pleural/peritoneal/pericardial effusion in 13 (54%). Cancer stem cells were successfully isolated in 15 patients (63%), including 14 with lung cancer (93.3%). A sensitivity assay was successfully performed in 7 patients (30.4%), with a median of 15 drugs/combinations tested (range 5-28) and a median time required for results of 51 days (range 37-95).

Conclusion

The approach used for the STELLA trial allowed isolation of cancer stem cells in a consistent proportion of patients. The low percentage of cases completing the full procedure and the long median time for obtaining results highlights the need for a more efficient procedure.

Trial Registration

ClinalTrials.gov NCT01483001  相似文献   

15.

Background

The endocannabinoid 2-arachidonoylglycerol (2-AG) is a known modulator of inflammation. Despite its high concentration in vascular tissue, the role of 2-AG in atherogenesis has not yet been examined.

Methods

ApoE-deficient mice were sublethally irradiated and reconstituted with bone marrow from mice with a myeloid-specific knockout of the 2-AG synthesising enzyme diacylglycerol lipase α (Dagla) or control bone marrow with an intact 2-AG biosynthesis. After a cholesterol-rich diet for 8 weeks, plaque size and plaque morphology were examined in chimeric mice. Circulating inflammatory cells were assessed by flow cytometry. Aortic tissue and plasma levels of endocannabinoids were measured using liquid chromatography-multiple reaction monitoring.

Results

Mice with Dagla-deficient bone marrow and circulating myeloid cells showed a significantly reduced plaque burden compared to controls. The reduction in plaque size was accompanied by a significantly diminished accumulation of both neutrophil granulocytes and macrophages in atherosclerotic lesions of Dagla-deficient mice. Moreover, CB2 expression and the amount of oxidised LDL within atherosclerotic lesions was significantly reduced. FACS analyses revealed that levels of circulating inflammatory cells were unaltered in Dagla-deficient mice.

Conclusions

Myeloid synthesis of the endocannabinoid 2-AG appears to promote vascular inflammation and atherogenesis. Thus, myeloid-specific disruption of 2-AG synthesis may represent a potential novel therapeutic strategy against atherosclerosis.  相似文献   

16.

Background

Epithelial-mesenchymal transition (EMT) plays a crucial role in small airway fibrosis of patients with chronic obstructive pulmonary disease (COPD). Increasing evidence suggests that the urokinase plasminogen activator receptor (uPAR) is involved in the pathogenesis of COPD. Increased uPAR expression has been implicated in the promotion of EMT in numerous cancers; however the role of uPAR in EMT in small airway epithelial cells of patients with COPD remains unclear. In this study, we investigated the degree of EMT and uPAR expression in lung epithelium of COPD patients, and verified the effect of uPAR on cigarette smoke extract (CSE)-induced EMT in vitro.

Methods

The expression of EMT biomarkers and uPAR was assessed in lung epithelium specimens from non-smokers (n = 25), smokers (n = 25) and non-smokers with COPD (n = 10) and smokers with COPD (n = 18). The role of uPAR on CSE-induced EMT in human small airway epithelial cells (HSAEpiCs) was assessed by silencing uPAR expression in vitro.

Results

Markers of active EMT and uPAR expression were significantly increased in the small airway epithelium of patients with COPD compared with controls. We also observed a significant correlation between uPAR and vimentin expression in the small airway epithelium. In vitro, CSE-induced EMT in HSAEpiCs was associated with high expression of uPAR, and targeted silencing of uPAR using shRNA inhibited CSE-induced EMT. Finally, we demonstrate that the PI3K/Akt signaling pathway is required for uPAR-mediated EMT in HSAEpiCs.

Conclusions

A uPAR-dependent signaling pathway is required for CSE-induced EMT, which contributes to small airway fibrosis in COPD. We propose that increased uPAR expression in the small airway epithelium of patients with COPD participates in an active EMT process.  相似文献   

17.

Background

In patients with immune-mediated inflammatory disorders, poor adherence to medication is associated with increased healthcare costs, decreased patient satisfaction, reduced quality of life and unfavorable treatment outcomes.

Objective

To determine the impact of different interventions on medication adherence in patients with immune-mediated inflammatory disorders.

Design

Systematic review.

Data sources

MEDLINE, EMBASE and Cochrane Library.

Study eligibility criteria for selecting studies

Included studies were clinical trials and observational studies in adult outpatients treated for psoriasis, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, spondyloarthritis, psoriatic arthritis or multiple sclerosis.

Study appraisal and synthesis methods

Intervention approaches were classified into four categories: educational, behavioral, cognitive behavioral, and multicomponent interventions. The risk of bias/study limitations of each study was assessed using the GRADE system.

Results

Fifteen studies (14 clinical trials and one observational study) met eligibility criteria and enrolled a total of 1958 patients. Forty percent of the studies (6/15) was conducted in patients with inflammatory bowel disease, half (7/15) in rheumatoid arthritis patients, one in psoriasis patients and one in multiple sclerosis patients. Seven out of 15 interventions were classified as multicomponent, four as educational, two as behavioral and two as cognitive behavioral. Nine studies, of which five were multicomponent interventions, had no serious limitations according to GRADE criteria. Nine out of 15 interventions showed an improvement of adherence: three multicomponent interventions in inflammatory bowel disease; one intervention of each category in rheumatoid arthritis; one multicomponent in psoriasis and one multicomponent in multiple sclerosis.

Conclusion

The assessment of interventions designed for increasing medication adherence in IMID is rare in the literature and their methodological quality may be improved in upcoming studies. Nonetheless, multicomponent interventions showed the strongest evidence for promoting adherence in patients with IMID.  相似文献   

18.

Background

Stem cell factor (SCF) can stimulate hematopoietic stem cell (HSC) expansion; however, the specific structural region(s) of SCF protein that are critical for this function are still unknown. A novel monoclonal antibody (named 23C8) against recombinant human SCF (rhSCF) was previously found to inhibit the ability of rhSCF to enhance HSC expansion, making it possible to identify the relevant active region to HSC.

Methods

Eleven polypeptides were synthesized, which were designed to cover the full-length of rhSCF, with overlaps that are at least 3 amino acids long. ELISA was used to identify the polypeptide(s) that specifically react with the anti-SCF. The effects of the synthetic polypeptides on human HSC expansion, or on the ability of the full-length rhSCF to stimulate cell proliferation, were evaluated ex vivo. Total cell number was monitored using hemocytometer whereas CD34+ cell number was calculated based on the proportion determined via flow cytometry on day 6 of culture.

Results

Of all polypeptides analyzed, only one, named P0, corresponding to the SCF protein sequence at residues 39–56, was recognized by 23C8 mAb during ELISA. P0 stimulated the expansion of CD34+ cells derived from human umbilical cord blood (UCB). Addition of P0 increased the numbers of total mononucleated cells and CD34+ cells, by ~2 fold on day 6. P0 also showed partial competition against full-length rhSCF in the ex vivo cell expansion assay.

Conclusion

Residues 39–56 of rhSCF comprise a critical functional region for its ability to enhance expansion of human UCB CD34+ cells. The peptide P0 is a potential candidate for further development as a synthetic substitute for rhSCF in laboratory and clinical applications.  相似文献   

19.

Background

Mast cells play a central role in allergic and inflammatory disorders by inducing degranulation and inflammatory mediator release. Recent reports have shown that miRNAs play an important role in inflammatory response regulation. Therefore, the role of miR-223 in mast cells was investigated.

Methods

The expression of miR-223 was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) in immunoglobulin E (IgE)-mediated mast cells. After successful miR-223 inhibition by transfection, degranulation was detected in IgE-mediated mast cells. The phosphorylation of IκB-α and Akt were examined using western blotting. NF-κB was tested using electrophoretic mobility shift assay. PI3K-inhibitor (LY294002) was used to investigate whether the PI3K/Akt pathway was essential for mast cell activation. The TargetScan database and a luciferase reporter system were used to identify whether insulin-like growth factor 1 receptor (IGF-1R) is a direct target of miR-223.

Results

MiR-223 expression was up-regulated in IgE-mediated mast cells, whereas its down-regulation promoted mast cell degranulation. Levels of IκB-α and Akt phosphorylation as well as NF-κB were increased in miR-223 inhibitor cells. LY294002 could block the PI3K/Akt signaling pathway and rescue the promotion caused by suppressing miR-223 in mast cells. IGF-1R was identified as a direct target of miR-223.

Conclusions

These findings suggest that down-regulation of miR-223 promotes degranulation via the PI3K/Akt pathway by targeting IGF-1R in mast cells.  相似文献   

20.

Background

Chronic rhinosinusitis is a multifactorial process disease in which bacterial infection or colonization may play an important role in the initiation or persistence of inflammatory response. The association between mucosal bacteria presence and inflammatory patterns has only been partially explored.

Objective

To demonstrate specific mucosal microorganisms possible association with inflammatory patterns.

Methods

We collected nasal polyps or sinus tissues from a clinical selection of six patient groups with defined sinus disease using tissue biomarkers. In the tissues, we detected bacteria using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH).

Results

After reviewing a total of 115 samples (15–20 samples per group), the mucosal presence of Staphylococcus aureus was correlated with IL-5 and SE-IgE positive chronic rhinosinusitis with nasal polyps and nasal polyps from cystic fibrosis patients. Chronic rhinosinusitis without nasal polyps with TNFα >20 pg/ml was associated with the mucosal presence of Pseudomonas aeruginosa.

Conclusion

This study identifies the relationship between intramucosal microbes and inflammatory patterns, suggesting that bacteria may affect the type of inflammation in chronic rhinosinusitis. Additional investigation is needed to further identify the nature of the relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号