首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Key message

PAT1H1, one of the homologues of Topoisomerase II-associated protein, is involved in the maintenance of root stem cell niche through the interaction with NINJA.

Abstract

The root stem cell niche, which possesses four mitotically inactive quiescent cells (QC) and the surrounding mitotically active stem cells, is critical for root development in Arabidopsis thaliana. However, the molecular regulation of the maintenance of root stem cell niche identity is still not fully understood. Here we show that one of the homologues of Topoisomerase II-associated protein, here named as PAT1H1, could regulate root stem cell niche identity. The pat1h1 mutant showed higher frequency of QC cell division and root distal stem cell (DSC) differentiation. With a high expression in roots, PAT1H1 was found to interact with the jasmonic acid (JA) signalling negative regulator Novel Interactor of JAZ (NINJA) and thus regulate root DSC niche identity. Consistent with the active QC cell division, which rarely occurs in wild-type controls, the pat1h1 mutant displayed higher expression of CYCB1 in the root stem cell niche. Together our data reveals that PAT1H1 maintains root stem cell niche stability through the interaction with NINJA and the regulation of cell division.
  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.  相似文献   

10.
11.
The molecular mechanism involved in cell wall dynamics has not been well clarified, although it is quite important for organ growth. We characterized a rice mutant, root growth inhibiting (rt), which is defective in root elongation. The rt mutant showed a severe defect in cell elongation at the root-elongating zone with additional collapse of epidermal and cortex cells at the root tip caused by the defect in the smooth exfoliation of root cap cells. Consistent with these phenotypes, expression of the RT gene, which encodes a member of the membrane-anchored endo-1,4-??-d-glucanase, was specifically localized in the root-elongating zone and at the junction between epidermal and root cap cells. The enzymatic analysis of root extracts from the wild-type and rt mutant indicated that RT hydrolyzes noncrystalline amorphous cellulose. The cellulose content was slightly increased but the crystallinity of cellulose was decreased in the rt root. In addition, the hemicellulose composition was different between wild-type and rt roots. The total extensibility was significantly lower in the rt root explants. Based on these results, we concluded that RT is involved in the disassembly of the cell wall for cell elongation in roots as well as for root cap exfoliation from the epidermal cell layer by hydrolyzing the noncrystalline amorphous cellulose fibers of cellulose microfibrils resulting in loosening of the hemicellulose and cellulose interaction.  相似文献   

12.
13.
MYC2 is an important regulator for jasmonic acid (JA) signaling, but little is known about its posttranslational regulation. Here, we show that the MYC2 C-terminal region interacted with the PLANT U-BOX PROTEIN10 (PUB10) armadillo repeats in vitro. MYC2 was efficiently polyubiquitinated by PUB10 with UBC8 as an E2 enzyme and the conserved C249 in PUB10 was required for activity. The inactive PUB10(C249A) mutant protein retained its ability to heterodimerize with PUB10, thus blocking PUB10 E3 activity as a dominant-negative mutant. Both MYC2 and PUB10 were nucleus localized and coimmunoprecipitation experiments confirmed their interaction in vivo. Although unstable in the wild type, MYC2 stability was enhanced in pub10, suggesting destabilization by PUB10. Moreover, MYC2 half-life was shortened or prolonged by induced expression of PUB10 or the dominant-negative PUB10(C249A) mutant, respectively. Root growth of pub10 seedlings phenocopied 35S:MYC2 seedlings and was hypersensitive to methyl jasmonate, whereas 35S:PUB10 and jin1-9 (myc2) seedlings were hyposensitive. In addition, the root phenotype conferred by MYC2 overexpression in double transgenic plants was reversed or enhanced by induced expression of PUB10 or PUB10(C249A), respectively. Similar results were obtained with three other JA-regulated genes, TAT, JR2, and PDF1.2. Collectively, our results show that MYC2 is targeted by PUB10 for degradation during JA responses.  相似文献   

14.
Jasmonates are lipid-derived hormones that act as signal molecules in abiotic and biotic stresses and influence several aspects of plant growth and development. In this work we have investigated the effect of jasmonic acid (JA) on the root architecture of Helianthus annuus seedlings and if JA and auxins interact to modulate the growth of the primary root (PR) and lateral roots (LR). The addition of μM concentrations of JA to the growing medium of sunflower seedlings decreased the growth of the PR and LR, and also reduced the number of LR. Moreover, treatment with ibuprofen, an inhibitor of JA synthesis, increased PR and LR root length causing a deep effect on root architecture. Hence, not only exogenous but also the endogenous JA regulates sunflower root growth. Microscopic analysis showed that the application of JA reduces the cortex cell length and the estimated cell production rate in root meristem while ibuprofen only affects the cell elongation. A possible interaction between JA and auxins to regulate root growth was further analyzed. We show that JA produced its phenotype even in the presence of reduced levels of auxin generated by treatment with an auxin transport inhibitor. Besides, the auxin produced its phenotype even when ibuprofen was applied. In conclusion, JA may induce primary and lateral root growth inhibition in sunflower by an auxin-independent pathway.  相似文献   

15.
16.
17.
It is well-known from the model dicotyledonous plants, Arabidopsis and tomato, that jasmonates (JAs) act as defense hormones in planta due to their potent ability to mediate defensive responses against insect/pathogen attacks or harsh environmental conditions. JA is also required for various developmental processes such as male fertility, seed maturation, root extension, and leaf senescence. In our recently published Plant Cell paper, the multiple roles of JA in the monocotyledonous agro-economically important model plant, maize, were investigated by comprehensive analysis of JA-deficient double mutant disrupted in the two oxophytodienoate reductase genes, OPR7 and OPR8. These two genes are the closest orthologs of the Arabidopsis JA-producing OPR3 and are the only maize OPRs required for JA biosynthesis. With this mutant, we previously showed that JA is essential for both male and female reproductive development, and required for the regulation of brace root pigmentation, leaf senescence, and defense against oomycete Pythium aristosporum, and beet armyworm (Spodoptera exigua). In this addendum, we expanded the investigation into the function of JA in elongation of sheaths, leaves, and roots, and its involvement in photomorphogenesis of seedlings.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号