首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.

Rationale

Plasma soluble Receptor for Advanced Glycation End Product (sRAGE) is considered as a biomarker in COPD. The contribution of endogenous sRAGE (esRAGE) to the pool of plasma sRAGE and the implication of both markers in COPD pathogenesis is however not clear yet. The aim of the current study was therefore to measure plasma levels of esRAGE comparative to total sRAGE in patients with COPD and a control group. Further, we established the relations of esRAGE and total sRAGE with disease specific characteristics such as lung function and DLCO, and with different circulating AGEs.

Methods

Plasma levels of esRAGE and sRAGE were measured in an 88 patients with COPD and in 55 healthy controls. FEV1 (%predicted) and FEV1/VC (%) were measured in both groups; DLCO (%predicted) was measured in patients only. In this study population we previously reported that the AGE Nϵ-(carboxymethyl) lysine (CML) was decreased, Nϵ-(carboxyethyl) lysine (CEL) increased and pentosidine was not different in plasma of COPD patients compared to controls.

Results

Plasma esRAGE (COPD: 533.9 ± 412.4, Controls: 848.7 ± 690.3 pg/ml; p = 0.000) was decreased in COPD compared to controls. No significant correlations were observed between plasma esRAGE levels and lung function parameters or plasma AGEs. A positive correlation was present between esRAGE and total sRAGE levels in the circulation. Confirming previous findings, total sRAGE (COPD: 512.6 ± 403.8, Controls: 1834 ± 804.2 pg/ml; p < 0.001) was lower in patients compared to controls and was positively correlated FEV1 (r = 0.235, p = 0.032), FEV1/VC (r = 0.218, p = 0.047), and DLCO (r = 0.308, p = 0.006). sRAGE furthermore did show a significant positive association with CML (r = 0.321, p = 0.003).

Conclusion

Although plasma esRAGE is decreased in COPD patients compared to controls, only total sRAGE showed a significant and independent association with FEV1, FEV1/VC and DLCO, indicating that total sRAGE but not esRAGE may serve as marker of COPD disease state and severity.  相似文献   

2.

Background

Chronic obstructive pulmonary disease, COPD, is an increasing cause of morbidity and mortality worldwide, and an imbalance between proteases and antiproteases has been implicated to play a role in COPD pathogenesis. Matrix metalloproteinases (MMP) are important proteases that along with their inhibitors, tissue inhibitors of metalloproteinases (TIMP), affect homeostasis of elastin and collagen, of importance for the structural integrity of human airways. Small observational studies indicate that these biomarkers are involved in the pathogenesis of COPD. The aim of this study was to investigate serum levels of MMP-9 and TIMP-1 in a large Swedish population-based cohort, and their association with disease severity and important clinical symptoms of COPD such as productive cough.

Methods

Spirometry was performed and peripheral blood samples were collected in a populations-based cohort (median age 67 years) comprising subjects with COPD (n = 594) and without COPD (n = 948), in total 1542 individuals. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbant assay (ELISA) and related to lung function data and symptoms.

Results

Median serum MMP-9 values were significantly higher in COPD compared with non-COPD 535 vs. 505 ng/ml (P = 0.017), without any significant differences in serum TIMP-1-levels or MMP-9/TIMP-1-ratio. In univariate analysis, productive cough and decreasing FEV1% predicted correlated significantly with increased MMP-9 among subjects with COPD (P = 0.004 and P = 0.001 respectively), and FEV1% predicted remained significantly associated to MMP-9 in a multivariate model adjusting for age, sex, pack years and productive cough (P = 0.033).

Conclusion

Productive cough and decreasing FEV1 were each associated with MMP-9 in COPD, and decreasing FEV1 remained significantly associated with MMP-9 also after adjustment for common confounders in this population-based COPD cohort. The increased serum MMP-9 concentrations in COPD indicate an enhanced proteolytic activity that is related to disease severity, and further longitudinal studies are important for the understanding of MMP-9 in relation to the disease process and the pathogenesis of different COPD phenotypes.  相似文献   

3.
4.

Background

Chronic obstructive pulmonary disease (COPD) is characterized by expiratory flow limitation, causing air trapping and lung hyperinflation. Hyperinflation leads to reduced exercise tolerance and poor quality of life in COPD patients. Total lung capacity (TLC) is an indicator of hyperinflation particularly in subjects with moderate-to-severe airflow obstruction. The aim of our study was to identify genetic variants associated with TLC in COPD.

Methods

We performed genome-wide association studies (GWASs) in white subjects from three cohorts: the COPDGene Study; the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); and GenKOLS (Bergen, Norway). All subjects were current or ex-smokers with at least moderate airflow obstruction, defined by a ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) <0.7 and FEV1 < 80% predicted on post-bronchodilator spirometry. TLC was calculated by using volumetric computed tomography scans at full inspiration (TLCCT). Genotyping in each cohort was completed, with statistical imputation of additional markers. To find genetic variants associated with TLCCT, linear regression models were used, with adjustment for age, sex, pack-years of smoking, height, and principal components for genetic ancestry. Results were summarized using fixed-effect meta-analysis.

Results

Analysis of a total of 4,543 COPD subjects identified one genome-wide significant locus on chromosome 5p15.2 (rs114929486, β = 0.42L, P = 4.66 × 10−8).

Conclusions

In COPD, TLCCT was associated with a SNP in dynein, axonemal, heavy chain 5 (DNAH5), a gene in which genetic variants can cause primary ciliary dyskinesia. DNAH5 could have an effect on hyperinflation in COPD.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0097-y) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

COPD patients have increased numbers of macrophages and neutrophils in the lungs. Interleukin-6 (IL-6) trans-signaling via its soluble receptor sIL-6R, governs the influx of innate immune cells to inflammatory foci through regulation of the chemokine CCL3. We hypothesized that there would be enhanced levels of IL-6, sIL-6R and CCL3 in COPD sputum.

Methods

59 COPD patients, 15 HNS and 15 S underwent sputum induction and processing with phosphate buffered saline to obtain supernatants for IL-6, sIL-6R and CCL3 analysis. Cytoslides were produced for differential cell counting and immunocytochemistry (COPD; n = 3) to determine cell type surface expression of the CCL3 receptors CCR5 and CCR1.

Results

COPD patients expressed higher levels (p < 0.05) of sIL-6R and CCL3 compared to controls (sIL-6R medians pg/ml: COPD 166.4 vs S 101.1 vs HNS 96.4; CCL3 medians pg/ml: COPD 117.9 vs S 0 vs HNS 2.7). COPD sIL-6R levels were significantly correlated with sputum neutrophil (r = 0.5, p < 0.0001) and macrophage (r = 0.3, p = 0.01) counts. Immunocytochemical analysis revealed that CCR5 and CCR1 were exclusively expressed on airway macrophages.

Conclusion

Enhanced airway generation of sIL-6R may promote IL-6 trans-signaling in COPD. Associated upregulation of CCL3 may facilitate the recruitment of macrophages into the airways by ligation of CCR1 and CCR5.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0103-4) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Long acting bronchodilators are the standard of care in the management of chronic obstructive pulmonary disease (COPD). The aim of this study was to investigate the efficacy and safety of V0162, a novel anticholinergic agent with bronchodilator properties, in preclinical models and in patients with COPD.

Methods

Guinea pigs were used to evaluate the impact of V0162 on the acetylcholine or histamine-induced bronchoconstriction. V0162 was also investigated in an allergic asthma model on ovalbumin-sensitized guinea pig. For clinical investigations, healthy volunteers were included in a dose-escalation, randomized, placebo-controlled phase I study to determine the maximal tolerated dose, followed by a randomized, placebo-controlled, cross-over phase II study in patients with COPD. V0162 was given via inhalation route. The objectives of the phase I/II study were to assess the safety and efficacy of V0162, in terms of bronchodilation and reduction in hyperinflation.

Results

Preclinical results showed that V0162 was able to prevent bronchoconstriction induced either by acetylcholine or histamine. V0162 reversed the bronchoconstriction and airway inflammation caused by ovalbumin challenge in sensitized guinea pigs. In the healthy volunteers study, 88 subjects were enrolled: 66 received V0162 and 22 received placebo. No particular safety concerns were raised. The maximal tolerated dose was not reached and the dose escalation was stopped at 2400 μg. A total of 20 patients with COPD were then enrolled. All patients received a single-dose of V0162 1600 μg and of placebo in two alternating periods. In COPD patients, V0162 demonstrated a significant increase in FEV1 compared with placebo (148 ± 137 ml vs. 36 ± 151 ml, p = 0.003). This bronchodilatory effect was corroborated by a reduction in hyperinflation. There was a trend toward dyspnea relief (change in visual analog scale at 22 h, −15.1 ± 26.0 mm vs.- 5.3 ± 28.8 mm with placebo, p = 0.054). No serious adverse events (AEs) were reported. Most common AEs were productive and non-productive cough, dyspnea and pruritus.

Conclusions

V0162 improved pulmonary function and tended to improve dyspnea in patients with COPD over more than 24 h. The slight plasmatic exposure observed might support the good safety profile.

Trial registration

ClinicalTrials.gov identifier: NCT01348555  相似文献   

7.

Introduction

Behçet’s disease (BD) as systemic vasculitis of unknown etiology is associated with HLA-B*51 in European and Asian populations. HLA-A*26 was claimed as an additional BD susceptibility marker in Japanese and Greek patients. This study was performed to test for HLA associations in HLA-B*51 negative German and Turkish BD populations.

Methods

In total, 65 German and 46 Turkish patients lacking HLA-B*51 were analyzed in comparison to healthy HLA-B*51 negative Germans (n = 1500) and Turks (n = 130). HLA-A/B genotypes were determined by SSOP. P-values with correction for multiple testing (pc), χ2-test and odds ratio (OR) were used for statistical evaluation.

Results

HLA-A*26 was significantly more frequent in HLA-B*51 German patients [pc = 0.0076, OR = 3.23, 95% CI 1.63 to 6.39] than in respective controls. HLA-A*26 was also elevated in a smaller group of Turkish patients versus the controls. Significant association of HLA-Bw4 with isoleucine at amino-acid position 80 (HLA-Bw4-80I) was found in the HLA-B*51 German cohort of BD patients [pc = 0.0042, OR = 2.35, 95% CI 1.41 to 3.93) and in the Turkish patients in comparison to the respective controls [p = 0.025, OR = 2.17, 95% CI 1.09 to 4.31]. On the contrary, HLA-Bw4-80 T was reduced in both HLA-B*51 BD patient cohorts.

Conclusions

The study shows a significant association of HLA-Bw4-80I present on HLA-B*51 as well as on other B-locus molecules with BD. This indicates that distinctive Bw4 epitopes on HLA-B locus molecules could play a role in BD pathogenesis. The study also indicates an association with HLA-A*26 in German and Turkish BD patients as a genetic risk factor independent of HLA-B*51.  相似文献   

8.

Background

Chronic bronchitis (CB) is one of the classic phenotypes of COPD. The aims of our study were to investigate genetic variants associated with COPD subjects with CB relative to smokers with normal spirometry, and to assess for genetic differences between subjects with CB and without CB within the COPD population.

Methods

We analyzed data from current and former smokers from three cohorts: the COPDGene Study; GenKOLS (Bergen, Norway); and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). CB was defined as having a cough productive of phlegm on most days for at least 3 consecutive months per year for at least 2 consecutive years. CB COPD cases were defined as having both CB and at least moderate COPD based on spirometry. Our primary analysis used smokers with normal spirometry as controls; secondary analysis was performed using COPD subjects without CB as controls. Genotyping was performed on Illumina platforms; results were summarized using fixed-effect meta-analysis.

Results

For CB COPD relative to smoking controls, we identified a new genome-wide significant locus on chromosome 11p15.5 (rs34391416, OR = 1.93, P = 4.99 × 10-8) as well as significant associations of known COPD SNPs within FAM13A. In addition, a GWAS of CB relative to those without CB within COPD subjects showed suggestive evidence for association on 1q23.3 (rs114931935, OR = 1.88, P = 4.99 × 10-7).

Conclusions

We found genome-wide significant associations with CB COPD on 4q22.1 (FAM13A) and 11p15.5 (EFCAB4A, CHID1 and AP2A2), and a locus associated with CB within COPD subjects on 1q23.3 (RPL31P11 and ATF6). This study provides further evidence that genetic variants may contribute to phenotypic heterogeneity of COPD.

Trial registration

ClinicalTrials.gov NCT00608764, NCT00292552

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0113-2) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Cardiovascular disease, osteoporosis and emphysema are associated with COPD. Associations between these factors and whether they predict all-cause mortality in COPD patients are not well understood. Therefore, we examined associations between markers of cardiovascular disease (coronary artery calcification [CAC], thoracic aortic calcification [TAC] and arterial stiffness), bone density (bone attenuation of the thoracic vertebrae), emphysema (PI-950 and 15th percentile) and all-cause mortality in a COPD cohort.

Methods

We assessed CAC, TAC, bone attenuation of the thoracic vertebrae, PI-950 and 15th percentile on low-dose chest computed tomography in COPD subjects. We measured arterial stiffness as carotid-radial pulse wave velocity (PWV), and identified deaths from the national register.

Results

We studied 119 COPD subjects; aged 67.8 ±7.3, 66% were males and mean FEV1% predicted was 46.0 ±17.5. Subjects were classified into three pre-specificed groups: CAC = 0 (n = 14), 0 < CAC ≤ 400 (n = 41) and CAC > 400 (n = 64). Subjects with higher CAC were more likely to be older (p < 0.001) and male (p = 0.03), and more likely to have higher systolic blood pressure (p = 0.001) and a history of hypertension (p = 0.002) or ischemic heart disease (p = 0.003). Higher CAC was associated with higher PWV (OR 1.62, p = 0.04) and lower bone attenuation (OR 0.32, p = 0.02), but not with 15th percentile, after adjustment for age, sex and pack-years of smoking. In a Cox proportional hazards model, CAC, TAC and 15th percentile predicted all-cause mortality (HR 2.01, 2.09 and 0.66, respectively).

Conclusions

Increased CAC was associated with increased arterial stiffness and lower bone density in a COPD cohort. In addition, CAC, TAC and extent of emphysema predicted all-cause mortality.

Trial registration

Lothian NHS Board, Lothian Research Ethics Committee, LREC/2003/8/28.  相似文献   

10.

Background

The combination of aclidinium bromide, a long-acting anticholinergic, and formoterol fumarate, a long-acting beta2-agonist (400/12 μg twice daily) achieves improvements in lung function greater than either monotherapy in patients with chronic obstructive pulmonary disease (COPD), and is approved in the European Union as a maintenance treatment. The effect of this combination on symptoms of COPD and exacerbations is less well established. We examined these outcomes in a pre-specified analysis of pooled data from two 24-week, double-blind, parallel-group, active- and placebo-controlled, multicentre, randomised Phase III studies (ACLIFORM and AUGMENT).

Methods

Patients ≥40 years with moderate to severe COPD (post-bronchodilator forced expiratory volume in 1 s [FEV1]/forced vital capacity <70 % and FEV1 ≥30 % but <80 % predicted normal) were randomised (ACLIFORM: 2:2:2:2:1; AUGMENT: 1:1:1:1:1) to twice-daily aclidinium/formoterol 400/12 μg or 400/6 μg, aclidinium 400 μg, formoterol 12 μg or placebo via Genuair™/Pressair®. Dyspnoea (Transition Dyspnoea Index; TDI), daily symptoms (EXAcerbations of Chronic pulmonary disease Tool [EXACT]-Respiratory Symptoms [E-RS] questionnaire), night-time and early-morning symptoms, exacerbations (Healthcare Resource Utilisation [HCRU] and EXACT definitions) and relief-medication use were assessed.

Results

The pooled intent-to-treat population included 3394 patients. Aclidinium/formoterol 400/12 μg significantly improved TDI focal score versus placebo and both monotherapies at Week 24 (all p < 0.05). Over 24 weeks, significant improvements in E-RS total score, overall night-time and early-morning symptom severity and limitation of early-morning activities were observed with aclidinium/formoterol 400/12 μg versus placebo and both monotherapies (all p < 0.05). The rate of moderate or severe HCRU exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg compared with placebo (p < 0.05) but not monotherapies; the rate of EXACT-defined exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg versus placebo (p < 0.01) and aclidinium (p < 0.05). Time to first HCRU or EXACT exacerbation was longer with aclidinium/formoterol 400/12 μg compared with placebo (all p < 0.05) but not the monotherapies. Relief-medication use was reduced with aclidinium/formoterol 400/12 μg versus placebo and aclidinium (p < 0.01).

Conclusions

Aclidinium/formoterol 400/12 μg significantly improves 24-hour symptom control compared with placebo, aclidinium and formoterol in patients with moderate to severe COPD. Furthermore, aclidinium/formoterol 400/12 μg reduces the frequency of exacerbations compared with placebo.

Trial registration

NCT01462942 and NCT01437397 (ClinicalTrials.gov)

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0250-2) contains supplementary material, which is available to authorized users.  相似文献   

11.

Rationale

Smoking-induced chronic obstructive pulmonary disease (COPD) is associated with acquired systemic cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Recently, sweat evaporimetry has been shown to efficiently measure β-adrenergic sweat rate and specifically quantify CFTR function in the secretory coil of the sweat gland.

Objectives

To evaluate the presence and severity of systemic CFTR dysfunction in smoking-related lung disease using sweat evaporimetry to determine CFTR-dependent sweat rate.

Methods

We recruited a cohort of patients consisting of healthy never smokers (N = 18), healthy smokers (12), COPD smokers (25), and COPD former smokers (12) and measured β-adrenergic sweat secretion rate with evaporative water loss, sweat chloride, and clinical data (spirometry and symptom questionnaires).

Measurements and main results

β-adrenergic sweat rate was reduced in COPD smokers (41.9 ± 3.4, P < 0.05, ± SEM) and COPD former smokers (39.0 ± 5.4, P < 0.05) compared to healthy controls (53.6 ± 3.4). Similarly, sweat chloride was significantly greater in COPD smokers (32.8 ± 3.3, P < 0.01) and COPD former smokers (37.8 ± 6.0, P < 0.01) vs. healthy controls (19.1 ± 2.5). Univariate analysis revealed a significant association between β-adrenergic sweat rate and female gender (β = 0.26), age (−0.28), FEV1% (0.35), dyspnea (−0.3), and history of smoking (−0.27; each P < 0.05). Stepwise multivariate regression included gender (0.39) and COPD (−0.43) in the final model (R2 = 0.266, P < 0.0001).

Conclusions

β-adrenergic sweat rate was significantly reduced in COPD patients, regardless of smoking status, reflecting acquired CFTR dysfunction and abnormal gland secretion in the skin that can persist despite smoking cessation. β-adrenergic sweat rate and sweat chloride are associated with COPD severity and clinical symptoms, supporting the hypothesis that CFTR decrements have a causative role in COPD pathogenesis.  相似文献   

12.

Objective

Atherosclerotic large vessel disease is potentially involved in the pathogenesis of cerebral small vessel disease related to occurrence of white matter lesions (WMLs) in the brain. We aimed to assess morphological and functional carotid vessel wall properties in relation to WML using magnetic resonance imaging (MRI) in myocardial infarction (MI) patients.

Materials and methods

A total of 20 MI patients (90 % male, 61 ± 11 years) underwent carotid artery and brain MRI. Carotid vessel wall thickness (VWT) was assessed, by detecting lumen and outer wall contours. Carotid pulse wave velocity (PWV), a measure of elasticity, was determined using the transit-time method. Patients were divided according to the median VWT into two groups. Brain MRI allowed for the WML score.

Results

Mean VWT was 1.41 ± 0.29 mm and mean carotid PWV was 7.0 ± 2.2 m/s. A significant correlation (Pearson r = 0.45, p = 0.046) between VWT and PWV was observed. Furthermore, in the group of high VWT, the median WML score was higher as compared with the group with lower VWT (4.0 vs 3.0, p = 0.035).

Conclusions

Carotid artery morphological and functional alterations are correlated in MI patients. Patients with high VWT showed a higher amount of periventricular WMLs. These findings support the hypothesis that atherosclerotic large vessel disease is potentially involved in the pathogenesis of cerebral small vessel disease.  相似文献   

13.

Background

Matrix metalloproteinases (MMPs) and C-reactive protein (CRP) are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. The aim of the present work was to determine plasma concentrations of MMPs and CRP in COPD associated to biomass combustion exposure (BE) and tobacco smoking (TS).

Methods

Pulmonary function tests, plasma levels of MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP were measured in COPD associated to BE (n = 40) and TS (n =40) patients, and healthy non-smoking (NS) healthy women (controls, n = 40).

Results

Plasma levels of MMP-1, MMP-7, MMP-9, and MMP-9/TIMP-1 and CRP were higher in BE and TS than in the NS healthy women (p <0.01). An inverse correlation between MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP plasma concentrations and FEV1 was observed.

Conclusions

Increase of MMPs and CRP plasma concentrations in BE suggests a systemic inflammatory phenomenon similar to that observed in COPD associated to tobacco smoking, which may also play a role in COPD pathogenesis.  相似文献   

14.

Background

Airway epithelium integrity is essential to maintain its role of mechanical and functional barrier. Recurrent epithelial injuries require a complex mechanism of repair to restore its integrity. In chronic obstructive pulmonary disease (COPD), an abnormal airway epithelial repair may participate in airway remodeling. The objective was to determine if airway epithelial wound repair of airway epithelium is abnormal in COPD.

Methods

Patients scheduled for lung resection were prospectively recruited. Demographic, clinical data and pulmonary function tests results were recorded. Emphysema was visually scored and histological remodeling features were noted. Primary bronchial epithelial cells (BEC) were extracted and cultured for wound closure assay. We determined the mean speed of wound closure (MSWC) and cell proliferation index, matrix metalloprotease (MMP)-2, MMP-9 and cytokines levels in supernatants of BEC 18 hours after cell wounding. In a subset of patients, bronchiolar epithelial cells were also cultured for wound closure assay for MSWC analyze.

Results

13 COPD and 7 non COPD patients were included. The severity of airflow obstruction and the severity of emphysema were associated with a lower MSWC in BEC (p = 0.01, 95% CI [0.15-0.80]; p = 0.04, 95% CI [−0.77;-0.03] respectively). Cell proliferation index was decreased in COPD patients (19 ± 6% in COPD vs 27 ± 3% in non COPD, p = 0.04). The severity of COPD was associated with a lower level of MMP-2 (7.8 ± 2 105 AU in COPD GOLD D vs 12.8 ± 0.13 105 AU in COPD GOLD A, p = 0.04) and a lower level of IL-4 (p = 0.03, 95% CI [0.09;0.87]). Moreover, higher levels of IL-4 and IL-2 were associated with a higher MSWC (p = 0.01, 95% CI [0.17;0.89] and p = 0.02, 95% CI [0.09;0.87] respectively). Clinical characteristics and smoking history were not associated with MSWC, cell proliferation index or MMP and cytokines levels. Finally, we showed an association of the MSWC of bronchial and corresponding bronchiolar epithelial cells obtained from the same patients (p = 0.02, 95% CI [0.12;0.89]).

Conclusion

Our results showed an abnormal bronchial epithelial wound closure process in severe COPD. Further studies are needed to elucidate the contribution and the regulation of this mechanism in the complex pathophysiology of COPD.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0151-9) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

The mechanisms underlying the association between smoking and mucus overproduction remain unknown. Because of its involvement in other airway diseases, such as asthma, we hypothesized that Ca2+-activated Cl- channel 1 (CLCA1) was associated with overproduction of mucus in the airways of smokers and COPD patients.

Methods

Using real-time quantitative PCR analyses, we compared the CLCA1 mRNA expression levels in induced-sputum cells from COPD patients (n = 20), smokers without COPD (n = 5), and non-smokers (n =13). We also examined the relationship between CLCA1 protein expression and mucus production in lung airway epithelia of COPD patients (n = 6), smokers without COPD (n = 7), and non-smokers (n = 7).

Results

CLCA1 mRNA expression was significantly up-regulated in the induced-sputum cells of COPD patients compared with cells of non-smokers (p = 0.02), but there was no significant difference compared with cells of smokers without COPD. Using immunostaining with an anti-CLCA1 antibody, semi-quantitative image analyses of airway epithelium demonstrated significantly increased CLCA1 expression in smokers without COPD (p = 0.02) and in COPD patients (p = 0.002) compared with non-smokers. There were significant negative correlations between CLCA1 protein expression and FEV1/FVC (r = −0.57, p = 0.01) and %predicted FEV1 (r = −0.56, p = 0.01). PAS staining for mucus showed that there was a significant positive correlation between CLCA1 protein expression and mucus production (r = 0.67, p = 0.001). These markers were significantly increased in smokers without COPD (p = 0.04) and in COPD patients (p = 0.003) compared with non-smokers (non-smokers < smokers ≤ COPD).

Conclusions

CLCA1 expression is significantly related to mucus production in the airway epithelia of smokers and COPD patients, and may contribute to the development and pathogenesis of COPD by inducing mucus production.  相似文献   

16.

Aim

To compare cardiovascular magnetic resonance (CMR)-derived right ventricular fractional shortening (RVFS), tricuspid annular plane systolic excursion with a reference point within the right ventricular apex (TAPSEin) and with one outside the ventricle (TAPSEout) with the standard volumetric approach in patients with hypertrophic cardiomyopathy (HCM).

Methods and results

105 patients with HCM and 20 healthy subjects underwent CMR. In patients with HCM, TAPSEin (r = 0.31, p = 0.001) and RVFS (r = 0.35, p = 0.0002) revealed a significant but weak correlation with right ventricular ejection fraction (RVEF), whereas TAPSEout (r = 0.57, p < 0.0001) showed a moderate correlation with RVEF. The ability to predict RVEF < 45 % in HCM patients was best for TAPSEout. In patients with hypertrophic obstructive cardiomyopathy (HOCM), RVEF showed a significant but weak correlation with TAPSEout (r = 0.36, p = 0.02) and no correlation with TAPSEin (r = 0.05, p = 0.07) and RVFS (r = 0.02, p = 0.2). In patients with hypertrophic non-obstructive cardiomyopathy (HNCM), there was a moderate correlation between RVEF and TAPSEout (r = 0.57, p < 0.0001) and a weak correlation with TAPSEin (r = 0.39, p = 0.001) and RVFS (r = 0.38, p = 0.002). In the 20 healthy controls, there was a strong correlation between RVEF and all semi-quantitative measurements.

Conclusion

CMR-derived TAPSEin is not suitable to determine right ventricular function in HCM patients. TAPSEout showed a good correlation with RVEF in HNCM patients but only a weak correlation in HOCM patients. TAPSEout might be used for screening but the detection of subtle changes in RV function requires the 3D volumetric approach.  相似文献   

17.
18.

Background

Epithelial-mesenchymal transition (EMT) plays a crucial role in small airway fibrosis of patients with chronic obstructive pulmonary disease (COPD). Increasing evidence suggests that the urokinase plasminogen activator receptor (uPAR) is involved in the pathogenesis of COPD. Increased uPAR expression has been implicated in the promotion of EMT in numerous cancers; however the role of uPAR in EMT in small airway epithelial cells of patients with COPD remains unclear. In this study, we investigated the degree of EMT and uPAR expression in lung epithelium of COPD patients, and verified the effect of uPAR on cigarette smoke extract (CSE)-induced EMT in vitro.

Methods

The expression of EMT biomarkers and uPAR was assessed in lung epithelium specimens from non-smokers (n = 25), smokers (n = 25) and non-smokers with COPD (n = 10) and smokers with COPD (n = 18). The role of uPAR on CSE-induced EMT in human small airway epithelial cells (HSAEpiCs) was assessed by silencing uPAR expression in vitro.

Results

Markers of active EMT and uPAR expression were significantly increased in the small airway epithelium of patients with COPD compared with controls. We also observed a significant correlation between uPAR and vimentin expression in the small airway epithelium. In vitro, CSE-induced EMT in HSAEpiCs was associated with high expression of uPAR, and targeted silencing of uPAR using shRNA inhibited CSE-induced EMT. Finally, we demonstrate that the PI3K/Akt signaling pathway is required for uPAR-mediated EMT in HSAEpiCs.

Conclusions

A uPAR-dependent signaling pathway is required for CSE-induced EMT, which contributes to small airway fibrosis in COPD. We propose that increased uPAR expression in the small airway epithelium of patients with COPD participates in an active EMT process.  相似文献   

19.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   

20.

Rationale

Bronchodilator responsiveness (BDR) is a common but variable phenomenon in COPD. The CT characteristics of airway dimensions that differentiate COPD subjects with BDR from those without BDR have not been well described. We aimed to assess airway dimensions in COPD subjects with and without BDR.

Methods

We analyzed subjects with GOLD 1–4 disease in the COPDGene® study who had CT airway analysis. We divided patients into two groups: BDR + (post bronchodilator ΔFEV1 ≥ 10%) and BDR-(post bronchodilator ΔFEV1 < 10%). The mean wall area percent (WA%) of six segmental bronchi in each subject was quantified using VIDA. Using 3D SLICER, airway wall thickness was also expressed as the square root wall area of an airway of 10 mm (Pi10) and 15 mm (Pi15) diameter. %Emphysema and %gas trapping were also calculated.

Results

2355 subjects in the BDR-group and 1306 in the BDR + group formed our analysis. The BDR + group had a greater Pi10, Pi15, and mean segmental WA% compared to the BDR-group. In multivariate logistic regression using gender, race, current smoking, history of asthma, %emphysema, %gas trapping, %predicted FEV1, and %predicted FVC, airway wall measures remained independent predictors of BDR. Using a threshold change in FEV1 ≥ 15% and FEV1 ≥ 12% and 200 mL to divide patients into groups, the results were similar.

Conclusion

BDR in COPD is independently associated with CT evidence of airway pathology. This study provides us with greater evidence of changes in lung structure that correlate with physiologic manifestations of airflow obstruction in COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号