首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Neointimal hyperplasia is a prominent pathological phenomenon in the process of stent restenosis. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play major pathological processes involved in the development of restenosis. l-Theanine, one of the major amino acid components in green tea, has been reported to improve vascular function. Here we display the effects of l-theanine on neointima formation and the underlying mechanism. In the rat carotid-artery balloon-injury model, l-theanine greatly inhibited neointima formation and prevented VSMCs from a contractile phenotype switching to a synthetic phenotype. In vitro study showed that l-theanine significantly inhibited PDGF-BB-induced VSMC proliferation and migration, which was comparable with the effect of l-theanine on AngII-induced VSMC proliferation and migration. Western blot analysis demonstrated that l-theanine suppressed PDGF-BB and AngII-induced reduction of SMA and SM22α and increment of OPN, suggesting that l-theanine inhibited the transformation of VSMCs from contractile to the synthetic phenotype. Further experiments showed that l-theanine exhibits potential preventive effects on neointimal hyperplasia and related vascular remodeling via inhibition of phosphorylation of Elk-1 and activation of MAPK1. The present study provides the new experimental evidence that l-theanine has potential clinical application as an anti-restenosis agent for the prevention of restenosis.  相似文献   

4.
Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.  相似文献   

5.
Vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype in human cardiovascular disease such as atherosclerosis and restenosis after angioplasty. VSMCs show reduced expression of contractile proteins and are capable of responding to mitogens by increasing expression of growth factor receptors. Fibroblast growth factor receptor-1 (FGFR1) signaling is one of several signaling pathways involved in this VSMC phenotypic switching. The aim of this study was to examine the signaling pathway downstream of FGFR1 in the regulation of SM marker gene expression. We found that FGFR1 activated Akt/mTOR pathway and that the mTOR inhibitor rapamycin partially reversed FGFR1-mediated downregulation of SM marker gene expression. Furthermore, we showed that mTOR forms a multi-protein complex with FGFR1 in VSMCs. These findings provide novel information for future development of therapeutic strategies for the treatment of human cardiovascular disease.  相似文献   

6.
Phenotypic change of vascular smooth muscle cells (VSMCs) from a differentiated to a dedifferentiated state accompanies the early stage of atherosclerosis and restenosis. Although much progress has been made in determining the molecular mechanisms involved in VSMC dedifferentiation, research on VSMC redifferentiation is hindered by the lack of an appropriate complete redifferentiation model. We established an in vitro model of redifferentiation by using postconfluent VSMCs from human umbilical artery. We demonstrated that serum-deprived VSMCs are capable of complete redifferentiation. After serum deprivation, postconfluent cultured human umbilical VSMCs became elongated and spindle shaped, with elevation of myofilament density, and reacquired contraction. Expressions of VSMC-specific contractile proteins, such as smooth muscle (SM) -actin, SM-myosin heavy chain, calponin, and SM 22, were increased and reached the levels in differentiated cells after serum deprivation. To determine the molecular mechanism of the phenotypic reversion, the levels of expression, phosphorylation, and binding activity of serum response factor (SRF), a key phenotypic modulator for VSMCs, were measured. The results showed that SRF binding activity with CArG motif was significantly increased after serum deprivation, whereas no changes were found in SRF expression and phosphorylation. The increased SRF binding activity was accompanied by an increase in expression of its coactivators such as myocardin. Furthermore, the phenotypic reversion was markedly inhibited by decoy double-strand oligodeoxynucleotides containing SM -actin CArG motif, which was able to competitively bind to SRF. The results suggested that serum deprivation results in redifferentiation of human umbilical VSMCs. This novel model of VSMC phenotypic reversion should be valuable for research on vascular disease. phenotype reversion; gene expression; serum response factor  相似文献   

7.
Wang N  Ren GD  Zhou Z  Xu Y  Qin T  Yu RF  Zhang TC 《IUBMB life》2012,64(4):331-339
Several reports demonstrated that mesenchymal stem cells (MSCs) might differentiate into smooth muscle cells (SMCs) in vitro and in vivo. It has been shown that myocardin protein is a strong inducer of smooth muscle genes and MSCs can differentiate into SMCs in response to transforming growth factor-β (TGF-β). However, the relationship or link between myocardin and TGF-β3-induced MSC differentiation has not been fully elucidated. Here, we demonstrated that both myocardin and TGF-β3 were able to induce differentiation of rat bone marrow-derived MSCs toward smooth-muscle-like cell types, as evidenced by increasing expression of SMC-specific genes. Of note, myocardin cooperated with Smad2 to synergistically activate SM22α promoter and significantly enhance the expression of SM22α. Report assays with site-direct mutation analysis of SM22α promoter demonstrated that myocardin and Smad2 coactivated SM22α promoter mainly depending on CArG box and less on smad binding elements (SBE) sites as well. These findings reveal the cooperation of myocardin and Smad2 in process of MSC differentiation into SMCs.  相似文献   

8.
9.
10.
11.
Phenotypic switching of vascular smooth muscle cells (VSMCs) is known to play a key role in the development of atherosclerosis. However, the mechanisms that mediate VSMC phenotypic switching are unclear. We report here that TIPE2, the tumor necrosis factor (TNF) α-induced protein 8-like 2 (TNFAIP8L2), plays an atheroprotective role by regulating phenotypic switching of VSMCs in response to oxidized low-density lipoprotein (ox-LDL) stimuli. TIPE2-deficient VSMCs treated with ox-LDL expressed lower levels of contractile proteins such as SMαA, SM-MHC and calponin, whereas the proliferation, migration and the synthetic capacity for growth factors and cytokines were increased remarkably. Furthermore, TIPE2 inhibited VSMCs proliferation by preventing G1/S phase transition. Interestingly, these effects of TIPE2 on VSMCs were dependent on P38 and ERK1/2 kinase signals. As a result, neointima formation was accelerated in the carotid arteries of TIPE2-deficient mice. These results indicate that TIPE2 is a potential inhibitor of atherosclerosis.  相似文献   

12.
In varicose veins, vascular smooth muscle cells (VSMCs) often show abnormal proliferative and migratory rates and phenotypic transition. This study aimed to investigate whether microRNA (miR)-202 and its potential target, peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), were involved in VSMC phenotypic transition. miR-202 expression was analyzed in varicose veins and in VSMCs conditioned with platelet-derived growth factor. The effect of miR-202 on cell proliferation and migration was assessed. Furthermore, contractile marker SM-22α, synthetic markers vimentin and collagen I, and PGC-1α were analyzed by Western blot analysis. The modulation of PGC-1α expression by miR-202 was also evaluated. In varicose veins and proliferative VSMCs, miR-202 expression was upregulated, with decreased SM-22α expression and increased vimentin and collagen I expression. Transfection with a miR-202 mimic induced VSMC proliferation and migration, whereas a miR-202 inhibitor reduced cell proliferation and migration. miR-202 mimic constrained luciferase activity in HEK293 cells that were cotransfected with the PGC-1α 3′-untranslated region (3′-UTR) but not those with mutated 3′-UTR. miR-202 suppressed PGC-1α protein expression, with no influence on its messenger RNA expression. PGC-1α mediated VSMC phenotypic transition and was correlated with reactive oxygen species production. In conclusion, miR-202 affects VSMC phenotypic transition by targeting PGC-1α expression, providing a novel target for varicose vein therapy.  相似文献   

13.
14.
Differentiation of vascular smooth muscle cells (VSMC) is a fundamental aspect of normal development and vascular disease. During contraction, VSMCs modulate calcium sensitivity through RhoA/ROCK-mediated inhibition of the myosin light chain phosphatase complex (MLCP). Previous studies have demonstrated that this signaling pathway functions in parallel to increase the expression of smooth muscle genes through the myocardin-family of co-activators. MEF2C fulfills a critical role in VSMC differentiation and regulates myocardin expression, leading us to investigate whether the RhoA/ROCK signaling cascade might regulate MEF2 activity. Depolarization-induced calcium signaling increased the expression of myocardin, which was sensitive to ROCK and p38 MAPK inhibition. We previously identified protein phosphatase 1α (PP1α), a known catalytic subunit of the MLCP in VSMCs, as a potent repressor of MEF2 activity. PP1α inhibition resulted in increased expression of myocardin, while ectopic expression of PP1α inhibited the induction of myocardin by MEF2C. Consistent with these data, shRNA-mediated suppression of a PP1α inhibitor, CPI-17, reduced myocardin expression and inhibited VSMC differentiation, suggesting a pivotal role for CPI-17 in regulating MEF2 activity. These data constitute evidence of a novel signaling cascade that links RhoA-mediated calcium sensitivity to MEF2-dependent myocardin expression in VSMCs through a mechanism involving p38 MAPK, PP1α, and CPI-17.  相似文献   

15.
16.
17.
Primary cultures of vascular smooth muscle cells (VSMCs) from rats offer a good model system to examine the molecular basis of mechanism of vascular contraction–relaxation. However, during pathological conditions such as atherosclerosis and hypertension, VSMCs characteristically exhibit phenotypic modulation, change from a quiescent contractile to a proliferative synthetic phenotype, which impairs this mechanism of vascular contraction–relaxation. Taking in account that Myosin light chain (MLC) and ERK1/2 directly participate in the process of vascular contraction, the aim of the current study was to analyze the involvement of MLC and ERK1/2 signaling during the process of VSMCs phenotypic modulation. Primary cultures of VSMCs from rat thoracic aortas were isolated and submitted to different number of passages or to freezing condition. Semi-quantitative RT-PCR was used to evaluate the mRNA levels of VSMCs differentiation markers, and western blot assays were used to determine the MLC and ERK1/2 phosphorylation levels during VSMCs phenotypic modulation. Also, immunocytochemical experiments were performed to evaluate morphological alterations occurred during the phenotypic modulation. Elevated number of passages (up to 4) as well as the freezing/thawing process induced a significant phenotypic modulation in VSMCs, which was accompanied by diminished MLC and ERK1/2 phosphorylation levels. Phosphorylation of MLC was suppressed completely by the treatment with a synthetic inhibitor of MEK-1, a direct upstream of ERK1/2, PD98059. These findings provide that ERK1/2-promoted MLC phosphorylation is impaired during VSMCs phenotypic modulation, suggesting that ERK1/2 signaling pathway may represent a potential target for understanding the pathogenesis of several vascular disease processes frequently associated to this condition.  相似文献   

18.
The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs.  相似文献   

19.
20.

Background

Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established.

Methodology/Principal Findings

Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels.

Conclusions

Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号