首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li C  Han J  Shang D  Li J  Wang Y  Wang Y  Zhang Y  Yao Q  Zhang C  Li K  Li X 《Gene》2012,503(1):101-109
Most methods for genome-wide association studies (GWAS) focus on discovering a single genetic variant, but the pathogenesis of complex diseases is thought to arise from the joint effect of multiple genetic variants. Information about pathway structure, such as the interactions and distances between gene products within pathways, can help us learn more about the functions and joint effect of genes associated with disease risk. We developed a novel sub-pathway based approach to study the joint effect of multiple genetic variants that are modestly associated with disease. The approach prioritized sub-pathways based on the significance values of single nucleotide polymorphisms (SNPs) and the interactions and distances between gene products within pathways. We applied the method to seven complex diseases. The result showed that our method can efficiently identify statistically significant sub-pathways associated with the pathogenesis of complex diseases. The approach identified sub-pathways that may inform the interpretation of GWAS data.  相似文献   

2.
Uncovering the underlying genetic component of any disease is key to the understanding of its pathophysiology and may open new avenues for development of therapeutic strategies and biomarkers. In the past several years, there has been an explosion of genome-wide association studies (GWAS) resulting in the discovery of novel candidate genes conferring risk for complex diseases, including neurodegenerative diseases. Despite this success, there still remains a substantial genetic component for many complex traits and conditions that is unexplained by the GWAS findings. Additionally, in many cases, the mechanism of action of the newly discovered disease risk variants is not inherently obvious. Furthermore, a genetic region with multiple genes may be identified via GWAS, making it difficult to discern the true disease risk gene. Several alternative approaches are proposed to overcome these potential shortcomings of GWAS, including the use of quantitative, biologically relevant phenotypes. Gene expression levels represent an important class of endophenotypes. Genetic linkage and association studies that utilize gene expression levels as endophenotypes determined that the expression levels of many genes are under genetic influence. This led to the postulate that there may exist many genetic variants that confer disease risk via modifying gene expression levels. Results from the handful of genetic studies which assess gene expression level endophenotypes in conjunction with disease risk suggest that this combined phenotype approach may both increase the power for gene discovery and lead to an enhanced understanding of their mode of action. This review summarizes the evidence in support of gene expression levels as promising endophenotypes in the discovery and characterization of novel candidate genes for complex diseases, which may also represent a novel approach in the genetic studies of Alzheimer's and other neurodegenerative diseases.  相似文献   

3.
Maria Masotti  Bin Guo  Baolin Wu 《Biometrics》2019,75(4):1076-1085
Genetic variants associated with disease outcomes can be used to develop personalized treatment. To reach this precision medicine goal, hundreds of large‐scale genome‐wide association studies (GWAS) have been conducted in the past decade to search for promising genetic variants associated with various traits. They have successfully identified tens of thousands of disease‐related variants. However, in total these identified variants explain only part of the variation for most complex traits. There remain many genetic variants with small effect sizes to be discovered, which calls for the development of (a) GWAS with more samples and more comprehensively genotyped variants, for example, the NHLBI Trans‐Omics for Precision Medicine (TOPMed) Program is planning to conduct whole genome sequencing on over 100 000 individuals; and (b) novel and more powerful statistical analysis methods. The current dominating GWAS analysis approach is the “single trait” association test, despite the fact that many GWAS are conducted in deeply phenotyped cohorts including many correlated and well‐characterized outcomes, which can help improve the power to detect novel variants if properly analyzed, as suggested by increasing evidence that pleiotropy, where a genetic variant affects multiple traits, is the norm in genome‐phenome associations. We aim to develop pleiotropy informed powerful association test methods across multiple traits for GWAS. Since it is generally very hard to access individual‐level GWAS phenotype and genotype data for those existing GWAS, due to privacy concerns and various logistical considerations, we develop rigorous statistical methods for pleiotropy informed adaptive multitrait association test methods that need only summary association statistics publicly available from most GWAS. We first develop a pleiotropy test, which has powerful performance for truly pleiotropic variants but is sensitive to the pleiotropy assumption. We then develop a pleiotropy informed adaptive test that has robust and powerful performance under various genetic models. We develop accurate and efficient numerical algorithms to compute the analytical P‐value for the proposed adaptive test without the need of resampling or permutation. We illustrate the performance of proposed methods through application to joint association test of GWAS meta‐analysis summary data for several glycemic traits. Our proposed adaptive test identified several novel loci missed by individual trait based GWAS meta‐analysis. All the proposed methods are implemented in a publicly available R package.  相似文献   

4.
Most common diseases are caused by multiple genetic and environmental factors. In the last 2 years, genome-wide association studies (GWAS) have identified polymorphisms that are associated with risk to common disease, but the effect of any one risk allele is typically small. By combining information from many risk variants, will it be possible to predict accurately each individual person's genetic risk for a disease? In this review we consider the lessons from GWAS and the implications for genetic risk prediction to common disease. We conclude that with larger GWAS sample sizes or by combining studies, accurate prediction of genetic risk will be possible, even if the causal mutations or the mechanisms by which they affect susceptibility are unknown.  相似文献   

5.
In most complex diseases, much of the heritability remains unaccounted for by common variants. It has been postulated that lower-frequency variants contribute to the remaining heritability. Here, we describe a method to test for polygenic inheritance from lower-frequency variants by using GWAS summary association statistics. We explored scenarios with many causal low-frequency variants and showed that there is more power to detect risk variants than to detect protective variants, resulting in an increase in the ratio of detected risk to protective variants (R/P ratio). Such an excess can also occur if risk variants are present and kept at lower frequencies because of negative selection. The R/P ratio can be falsely elevated because of reasons unrelated to polygenic inheritance, such as uneven sample sizes or asymmetric population stratification, so precautions to correct for these confounders are essential. We tested our method on published GWAS results and observed a strong signal in some diseases (schizophrenia and type 2 diabetes) but not others. We also explored the shared genetic component in overlapping phenotypes related to inflammatory bowel disease (Crohn disease [CD] and ulcerative colitis [UC]) and diabetic nephropathy (macroalbuminuria and end-stage renal disease [ESRD]). Although the signal was still present when both CD and UC were jointly analyzed, the signal was lost when macroalbuminuria and ESRD were jointly analyzed, suggesting that these phenotypes should best be studied separately. Thus, our method may also help guide the design of future genetic studies of various traits and diseases.  相似文献   

6.
全基因组关联研究现状   总被引:6,自引:1,他引:5  
Han JW  Zhang XJ 《遗传》2011,33(1):25-35
在过去的5年中, 全基因组关联研究(Genome-wide association study, GWAS)方法已被证明是研究复杂疾病和性状遗传易感变异的一种有效手段。目前, 各国科学家在多种复杂疾病和性状中开展了大量的GWAS, 对肿瘤、糖尿病、心脏病、神经精神疾病、自身免疫及免疫相关疾病等复杂疾病以及一些常见性状(如身高、体重、血脂、色素等)的遗传易感基因研究取得了重大成果。截止到2010年9月11日, 运用GWAS开展了对近200种复杂疾病/性状的研究, 发现了3 000多个疾病相关的遗传变异。文章就GWAS的发展及其在复杂疾病/性状中的应用做一综述。  相似文献   

7.
8.
A better understanding of complex diseases and their genetics has been gained by investigating genetic disorders of lipoprotein metabolism. This has resulted in the development of ddrugs to prevent atherosclerosis, the most frequent cause of death in industrialized countries. Thus, analysis of familial hypercholesterinemia (FH), the most frequent cause of which are mutations on the LDLR gene, has contributed to the development of HMG-CoA reductase inhibitors (statins). Meanwhile, in genome-wide association studies (GWAS), variants in over 90 genes have been found to influence the concentration of plasma lipids. However, these explain only a small fraction of the genetic variance of the traits. Taking the classical polymorphism of Apo-E as an example, it is discussed that one possible reason for the ??missing heritability?? may be the selection of the SNPs on the arrays used in the GWAS. Further, this polymorphism demonstrates how interactions may mask a connection between a genotype and a disease. Genetic studies based on the principle of ??Mendelian randomization?? have established the causal role of a high Lp(a) concentration as a risk factor for coronary heart disease (CHD). For patients with end-stage renal disease, however, a polymorphism (KIV-2 CNV) is a better predictor for CHD than Lp(a) concentration.  相似文献   

9.
10.
冠心病全基因组关联研究进展   总被引:2,自引:0,他引:2  
杨英  鲁向锋 《遗传》2010,32(2):97-104
近年来全基因组关联研究在世界范围内发展迅猛,研究者应用全基因组关联研究策略发现了一系列疾病的相关基因或变异,将疾病的基因组研究推向一个新的阶段。冠心病是一种由环境因素和遗传因素共同作用导致的复杂疾病,且是世界范围内死亡和致残的首要原因之一,世界各地的研究者应用此策略发现了候选基因关联研究未曾发现的多个冠心病相关易感区域。文章对近年来世界范围内针对冠心病的全基因组关联研究取得的重要进展进行简要总结,然后就现阶段全基因组关联研究所面临的挑战以及对未来研究的发展趋势进行分析阐述,为进一步探究冠心病的遗传机制提供指导。  相似文献   

11.
A Nazarian  H Sichtig  A Riva 《PloS one》2012,7(9):e44162
Complex disorders are a class of diseases whose phenotypic variance is caused by the interplay of multiple genetic and environmental factors. Analyzing the complexity underlying the genetic architecture of such traits may help develop more efficient diagnostic tests and therapeutic protocols. Despite the continuous advances in revealing the genetic basis of many of complex diseases using genome-wide association studies (GWAS), a major proportion of their genetic variance has remained unexplained, in part because GWAS are unable to reliably detect small individual risk contributions and to capture the underlying genetic heterogeneity. In this paper we describe a hypothesis-based method to analyze the association between multiple genetic factors and a complex phenotype. Starting from sets of markers selected based on preexisting biomedical knowledge, our method generates multi-marker models relevant to the biological process underlying a complex trait for which genotype data is available. We tested the applicability of our method using the WTCCC case-control dataset. Analyzing a number of biological pathways, the method was able to identify several immune system related multi-SNP models significantly associated with Rheumatoid Arthritis (RA) and Crohn's disease (CD). RA-associated multi-SNP models were also replicated in an independent case-control dataset. The method we present provides a framework for capturing joint contributions of genetic factors to complex traits. In contrast to hypothesis-free approaches, its results can be given a direct biological interpretation. The replicated multi-SNP models generated by our analysis may serve as a predictor to estimate the risk of RA development in individuals of Caucasian ancestry.  相似文献   

12.
Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Despite remarkable success in uncovering many risk variants and providing novel insights into disease biology, genetic variants identified to date fail to explain the vast majority of the heritability for most complex diseases. One explanation is that there are still a large number of common variants that remain to be discovered, but their effect sizes are generally too small to be detected individually. Accordingly, gene set analysis of GWAS, which examines a group of functionally related genes, has been proposed as a complementary approach to single-marker analysis. Here, we propose a flexible and adaptive test for gene sets (FLAGS), using summary statistics. Extensive simulations showed that this method has an appropriate type I error rate and outperforms existing methods with increased power. As a proof of principle, through real data analyses of Crohn’s disease GWAS data and bipolar disorder GWAS meta-analysis results, we demonstrated the superior performance of FLAGS over several state-of-the-art association tests for gene sets. Our method allows for the more powerful application of gene set analysis to complex diseases, which will have broad use given that GWAS summary results are increasingly publicly available.  相似文献   

13.
14.
Genome-wide association studies (GWAS) have detected many disease associations. However, the reported variants tend to explain small fractions of risk, and there are doubts about issues such as the portability of findings over different ethnic groups or the relative roles of rare versus common variants in the genetic architecture of complex disease. Studying the degree of sharing of disease-associated variants across populations can help in solving these issues. We present a comprehensive survey of GWAS replicability across 28 diseases. Most loci and SNPs discovered in Europeans for these conditions have been extensively replicated using peoples of European and East Asian ancestry, while the replication with individuals of African ancestry is much less common. We found a strong and significant correlation of Odds Ratios across Europeans and East Asians, indicating that underlying causal variants are common and shared between the two ancestries. Moreover, SNPs that failed to replicate in East Asians map into genomic regions where Linkage Disequilibrium patterns differ significantly between populations. Finally, we observed that GWAS with larger sample sizes have detected variants with weaker effects rather than with lower frequencies. Our results indicate that most GWAS results are due to common variants. In addition, the sharing of disease alleles and the high correlation in their effect sizes suggest that most of the underlying causal variants are shared between Europeans and East Asians and that they tend to map close to the associated marker SNPs.  相似文献   

15.
Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.  相似文献   

16.
So HC  Yip BH  Sham PC 《PloS one》2010,5(11):e13898
Recently genome-wide association studies (GWAS) have identified numerous susceptibility variants for complex diseases. In this study we proposed several approaches to estimate the total number of variants underlying these diseases. We assume that the variance explained by genetic markers (Vg) follow an exponential distribution, which is justified by previous studies on theories of adaptation. Our aim is to fit the observed distribution of Vg from GWAS to its theoretical distribution. The number of variants is obtained by the heritability divided by the estimated mean of the exponential distribution. In practice, due to limited sample sizes, there is insufficient power to detect variants with small effects. Therefore the power was taken into account in fitting. Besides considering the most significant variants, we also tried to relax the significance threshold, allowing more markers to be fitted. The effects of false positive variants were removed by considering the local false discovery rates. In addition, we developed an alternative approach by directly fitting the z-statistics from GWAS to its theoretical distribution. In all cases, the "winner's curse" effect was corrected analytically. Confidence intervals were also derived. Simulations were performed to compare and verify the performance of different estimators (which incorporates various means of winner's curse correction) and the coverage of the proposed analytic confidence intervals. Our methodology only requires summary statistics and is able to handle both binary and continuous traits. Finally we applied the methods to a few real disease examples (lipid traits, type 2 diabetes and Crohn's disease) and estimated that hundreds to nearly a thousand variants underlie these traits.  相似文献   

17.

Background

In recent years, capabilities for genotyping large sets of single nucleotide polymorphisms (SNPs) has increased considerably with the ability to genotype over 1 million SNP markers across the genome. This advancement in technology has led to an increase in the number of genome-wide association studies (GWAS) for various complex traits. These GWAS have resulted in the implication of over 1500 SNPs associated with disease traits. However, the SNPs identified from these GWAS are not necessarily the functional variants. Therefore, the next phase in GWAS will involve the refining of these putative loci.

Methodology

A next step for GWAS would be to catalog all variants, especially rarer variants, within the detected loci, followed by the association analysis of the detected variants with the disease trait. However, sequencing a locus in a large number of subjects is still relatively expensive. A more cost effective approach would be to sequence a portion of the individuals, followed by the application of genotype imputation methods for imputing markers in the remaining individuals. A potentially attractive alternative option would be to impute based on the 1000 Genomes Project; however, this has the drawbacks of using a reference population that does not necessarily match the disease status and LD pattern of the study population. We explored a variety of approaches for carrying out the imputation using a reference panel consisting of sequence data for a fraction of the study participants using data from both a candidate gene sequencing study and the 1000 Genomes Project.

Conclusions

Imputation of genetic variation based on a proportion of sequenced samples is feasible. Our results indicate the following sequencing study design guidelines which take advantage of the recent advances in genotype imputation methodology: Select the largest and most diverse reference panel for sequencing and genotype as many “anchor” markers as possible.  相似文献   

18.
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease with complex aetiology. A haplotype within the major histocompatibility region is the major risk factor for MS, but despite clear evidence for a genetic component additional risk variants were not identified until the recent advent of genome-wide association studies (GWAS). At present, 10 GWAS have been conducted in MS, and together with follow-up studies these have confirmed 16 loci with genome-wide significance. Many of these common risk variants are located at or near genes with central immunological functions and the majority are associated with other autoimmune diseases. However, evidence from pathway analyses on more modestly associated variants also supports the involvement of neurological genes. Although the mechanisms by which the associated variants exert their effects are still poorly understood, some have been shown to correlate with expression of nearby genes. Further studies are required to define the functionally relevant variants in the identified regions and to investigate their effects at the molecular and cellular level. Finally, many genetic risk variants for MS remain to be identified. In order to expose some of the loci with more modest effects, a GWAS in nearly 10,000 MS patients has recently been completed.  相似文献   

19.
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age‐related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age‐associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high‐resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression.  相似文献   

20.
《Trends in genetics : TIG》2023,39(4):268-284
Genome-wide association studies (GWAS) have now correlated hundreds of genetic variants with complex genetic diseases and drug efficacy. Functional characterization of these factors remains challenging, particularly because of the lack of human model systems. Molecular and nanotechnological advances, in particular the ability to generate patient-specific PSC lines, differentiate them into diverse cell types, and seed and combine them on microfluidic chips, have led to the establishment of organ-on-a-chip (OoC) platforms that recapitulate organ biology. OoC technology thus provides unique personalized platforms for studying the effects of host genetics and environmental factors on organ physiology. In this review we describe the technology and provide examples of how OoCs may be used for disease modeling and pharmacogenetic research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号