首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Background

Sugarcane smut can cause losses in cane yield and sugar content that range from 30% to total crop failure. Losses tend to increase with the passage of years. Sporisorium scitamineum is the fungus that causes sugarcane smut. This fungus has the potential to infect all sugarcane species unless a species is resistant to biotrophic fungal pathogens. However, it remains unclear how the fungus breaks through the cell walls of sugarcane and causes the formation of black or gray whip-like structures on the sugarcane plants.

Results

Here, we report the first high-quality genome sequence of S. scitamineum assembled de novo with a contig N50 of 41 kb, a scaffold N50 of 884 kb and genome size 19.8 Mb, containing an estimated 6,636 genes. This phytopathogen can utilize a wide range of carbon and nitrogen sources. A reduced set of genes encoding plant cell wall hydrolytic enzymes leads to its biotrophic lifestyle, in which damage to the host should be minimized. As a bipolar mating fungus, a and b loci are linked and the mating-type locus segregates as a single locus. The S. scitamineum genome has only 6 G protein-coupled receptors (GPCRs) grouped into five classes, which are responsible for transducing extracellular signals into intracellular responses, however, the genome is without any PTH11-like GPCR. There are 192 virulence associated genes in the genome of S. scitamineum, among which 31 expressed in all the stages, which mainly encode for energy metabolism and redox of short-chain compound related enzymes. Sixty-eight candidates for secreted effector proteins (CSEPs) were found in the genome of S. scitamineum, and 32 of them expressed in the different stages of sugarcane infection, which are probably involved in infection and/or triggering defense responses. There are two non-ribosomal peptide synthetase (NRPS) gene clusters that are involved in the generation of ferrichrome and ferrichrome A, while the terpenes gene cluster is composed of three unknown function genes and seven biosynthesis related genes.

Conclusions

As a destructive pathogen to sugar industry, the S. scitamineum genome will facilitate future research on the genomic basis and the pathogenic mechanisms of sugarcane smut.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-996) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
Sporisorium scitamineum is the causal agent of sugarcane smut disease. The fungus establishes a biotrophic interaction with sugarcane tissues, and unlike smut fungi of other monocot hosts, the primary meristem of sugarcane plants develops a whip‐like structure instead of a tumour‐like galls emerging from floral structures (tassels and ears). We examined (GFP)‐tagged S. scitamineum infecting tissues of three sugarcane genotypes with distinct responses to smut (susceptible, intermediate resistant and resistant). Mating compatible haploid cells gfp‐expressing were obtained by Agrobacterium tumefaciens‐mediated transformation (ATMT) using the integrative vector pFAT‐gfp. Regardless of the inoculation method (drop inoculation and hypodermal syringe inoculation), all genotypes were colonised by the fungus. GFP‐tagged strains of opposite mating reaction were able to: (a) grow in vitro as fluorescent yeast‐like cells; (b) generate infectious dikaryon; (c) penetrate sugarcane tissues; (d) colonise tissues by growing a filamentous network; and (e) form the characteristic highly branched hyphae within host cells. Fungal colonisation 160 DAI revealed an association of the fungus with vascular vessels disrupting their organisation in all three genotypes analysed. However, the resistant plants did not develop whips spanning the experiment time. The first whips emerged 76 DAI from plants of the susceptible genotype whereas for intermediate resistant plants whips were detected at 137 DAI. These whips were dissected and fluorescent sporogenesis and teliospore maturation were analysed. In vitro germination of recovered teliospores revealed after meiosis the formation of a three‐celled hyphal filament, where the fourth cell was likely maintained in the teliospore coat. These cells showed independent segregation of the gfp marker, as a result of gfp insertions in different chromosomes of each compatible haploid strain. This work presents the complete fungal life cycle of GFP‐marked S. scitamineum to study developmental stages in planta.  相似文献   

5.
Smut disease caused by Sporisorium scitamineum is one of the most destructive sugarcane diseases worldwide. The pathogen spreads primarily through infected sugarcane setts, and hence, the use of disease‐free planting materials is essential for preventing disease development in the field. In this study, a species‐specific loop‐mediated isothermal amplification (LAMP) assay was developed for rapid and accurate detection of S. scitamineum. Based on the differences in internal transcribed spacer (ITS) sequences of S. scitamineum, a set of four species‐specific primers, F3, B3, FIP and BIP, were designed by using a panel of fungal and bacterial species as controls. After optimization of the reaction conditions, the detection limit of LAMP assay was about 2 fg of the S. scitamineum genomic DNA in 25 µL reaction solution, 100‐fold lower than that of conventional polymerase chain reaction. The assay showed high specificity to discriminate all S. scitamineum isolates from nine other fungal and bacterial pathogens. The LAMP assay also detected smut infection from young sugarcane leaves with no visible smut‐disease symptoms. The findings from this study provide a simple, highly sensitive, rapid and reliable technique for early detection of S. scitamineum, which may be useful for sugarcane quarantine and production of smut‐free seedcanes. This is the first report of LAMP‐based assay for the detection of S. scitamineum in sugarcane.  相似文献   

6.

Key message

Two β-1,3-glucanase genes from sugarcane were cloned and characterized. They were all located in apoplast and involves in different expression patterns in biotic and abiotic stress.

Abstract

Smut caused by Sporisorium scitamineum is a serious disease in the sugarcane industry. β-1,3-Glucanase, a typical pathogenesis-related protein, has been shown to express during plant–pathogen interaction and involves in sugarcane defense response. In this study, β-1,3-glucanase enzyme activity in the resistant variety increased faster and lasted longer than that of the susceptible one when inoculated with S. scitamineum, along with a positive correlation between the activity of the β-1,3-glucanase and smut resistance. Furthermore, two β-1,3-glucanase genes from S. scitamineum infected sugarcane, ScGluA1 (GenBank Accession No. KC848050) and ScGluD1 (GenBank Accession No. KC848051) were cloned and characterized. Phylogenetic analysis suggested that ScGluA1 and ScGluD1 clustered within subfamily A and subfamily D, respectively. Subcellular localization analysis demonstrated that both gene products were targeted to apoplast. Escherichia coli Rosetta (DE3) cells expressing ScGluA1 and ScGluD1 showed varying degrees of tolerance to NaCl, CdCl2, PEG, CuCl2 and ZnSO4. Q-PCR analysis showed up-regulation of ScGluA1 and slight down-regulation of ScGluD1 in response to S. scitamineum infection. It suggested that ScGluA1 may be involved in the defense reaction of the sugarcane to the smut, while it is likely that ScGluD1 was inhibited. The gene expression patterns of ScGluA1 and ScGluD1, in response to abiotic stresses, were similar to sugarcane response against smut infection. Together, β-1,3-glucanase may function in sugarcane defense mechanism for S. scitamineum. The positive responses of ScGluA1 and the negative responses of ScGluD1 to biotic and abiotic stresses indicate they play different roles in interaction between sugarcane and biotic or abiotic stresses.  相似文献   

7.
[目的]甘蔗鞭黑粉菌(Sporisorium scitamineum)引起的甘蔗黑穗病是我国甘蔗生产重要的病害.示踪甘蔗鞭黑粉菌侵染甘蔗的过程将有助于揭示其致病性和甘蔗抗黑穗病机制,为抗病品种的选育以及黑穗病的防治奠定基础.[方法]利用农杆菌介导的遗传转化技术对甘蔗鞭黑粉菌进行黄色荧光标记,对转化子进行配合及致病力检测...  相似文献   

8.
9.
Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS) to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05–179) resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03–182), suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183), was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA) treatments, oxidative (H2O2) stress, heavy metal (CuCl2) and hyper-osmotic (PEG and NaCl) stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli.  相似文献   

10.
Sexual mating of compatible sporida is essential for Sporisorium scitamineum to form dikaryotic mycelia and then cause infection on sugarcane. Our previous work identified a Pseudomonas sp. ST4 from a soil sample, which showed a promising biocontrol potential by inhibiting the mating of S. scitamineum sporida and hyphal growth. In this study, we set to isolate the active compounds from Pseudomonas sp. ST4 through solid fermentation. High-performance liquid chromatography (HPLC) separation coupling with bioassay showed that Pseudomonas sp. ST4 produced a range of antimicrobial compounds. Two of the major components were purified following acetate extraction, silica gel and HPLC separation. Nuclear magnetic resonance (NMR) and liquid chromatography–mass spectrometry (LC-MS) analysis identified these active compounds are 4-hydroxybenzaldehyde and indole-3-carbaldehyde respectively. Further analysis showed that the former compound only inhibited the hyphal growth of the fungus at a concentration of 3 mM, while the latter interfered the fungal sexual mating at a concentration of 0.6 mM and affected hyphal growth at a concentration of 2 mM. Treatment of corn plants with 3 mM indole-3-carbaldehyde significantly inhibited corn smut infection, with a control rate up to 94%. Further analysis of the structure and activity relationship revealed that indole has a much stronger inhibitory activity against the fungal sexual mating than indole-3-carbaldehyde. The results from this study provide new agents for control and prevention of the sugarcane smut disease, and the active compounds could also be used to probe the molecular mechanisms of fungal sexual mating.  相似文献   

11.
真菌病害占作物病害种类的一半以上,病原真菌是目前已知种类最多的作物病原菌。从作物根际与/或体内分离筛选具有生防活性的微生物,并应用于病害的防控,是除作物品种改良与化学防治外的另一种高效的病害防控策略。【目的】本研究拟筛选并分离鉴定对重要作物病原真菌具有拮抗作用的甘蔗内生细菌,为开发生物防治作物真菌病害新策略提供理论依据。【方法】采用平板对峙法初步筛选对病原真菌具有拮抗能力的甘蔗叶片内生细菌,通过16SrRNA基因测序鉴定其种属;进一步检测候选拮抗内生细菌对甘蔗鞭孢堆黑粉菌(Sporisorium scitamineum)致病发育过程关键步骤:有性配合/菌丝生长、冬孢子萌发的抑制率,田间试验检测其对甘蔗鞭黑穗病的防治效果;检测候选拮抗内生细菌对稻梨孢菌(Pyricularia oryzae)附着胞形成、离体叶片及盆栽条件下叶片病斑形成的抑制作用。【结果】分离自甘蔗叶片的细菌菌株,编号为CGB15,经分子鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。CGB15菌株能有效抑制甘蔗鞭孢堆黑粉菌有性配合/菌丝生长,对峙培养条件下使真菌菌落呈现光滑;抑制冬孢子萌发,...  相似文献   

12.
13.

Background

The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood.

Results

We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns.

Conclusions

These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-336) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
17.
Here we report the complete sequence of the mitochondrial (mt) genome of the necrotrophic phytopathogenic fungus Sclerotinia borealis, a member of the order Helotiales of Ascomycetes. The 203,051 bp long mtDNA of S. borealis represents one of the largest sequenced fungal mt genomes. The large size is mostly determined by the presence of mobile genetic elements, which include 61 introns. Introns contain a total of 125,394 bp, are scattered throughout the genome, and are found in 12 protein-coding genes and in the ribosomal RNA genes. Most introns contain complete or truncated ORFs that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Integrations of mobile elements are also evidenced by the presence of two regions similar to fragments of inverton-like plasmids. Although duplications of some short genome regions, resulting in the appearance of truncated extra copies of genes, did occur, we found no evidences of extensive accumulation of repeat sequences accounting for mitochondrial genome size expansion in some other fungi. Comparisons of mtDNA of S. borealis with other members of the order Helotiales reveal considerable gene order conservation and a dynamic pattern of intron acquisition and loss during evolution. Our data are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution and size expansion of the S. borealis mt genome.  相似文献   

18.
19.
20.
False smut disease of rice is posing an increasing concern for production, not only because of the hiking epidemic occurrence in rice production, but also because of the challenging specific pathogenesis of the disease. The aim of this work was to evaluate the potential of five fungal endophytes to reduce negative effects of rice false smut fungus (Ustilagonoidea virens) on rice plants, in both the laboratory and greenhouse. Though all the fungal isolates showed the ability to inhibit the growth of U. virens with varying degrees, isolate E337 showed significant antagonistic activity against the pathogenic fungi. The isolate E337 was identified as Antennariella placitae by molecular and morphological data analysis including 18S rDNA sequence analysis. This isolate showed a significant in vitro inhibition of mycelial growth of U. virens by dual culture method and it was subsequently tested for its in vivo biocontrol potential on false smut disease on rice plants. Greenhouse experiments confirmed that applications of conidia of A. placitae protected rice plants by improving rice yield and by decreasing the severity of false smut disease on susceptible rice plants. This is the first report where A. placitae has been identified as a biocontrol organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号