首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial translation initiation factor 3 (IF3) is involved in the fidelity of translation initiation at several levels, including start-codon discrimination, mRNA translation, and initiator-tRNA selection. The IF3 C-terminal domain (CTD) is required for binding to the 30S ribosomal subunit. N-terminal domain (NTD) function is less certain, but likely contributes to initiation fidelity. Point mutations in either domain can decrease initiation fidelity, but C-terminal domain mutations may be indirect. Here, the Y75N substitution mutation in the NTD is examined in vitro and in vivo. IF3Y75N protein binds 30S subunits normally, but is defective in start-codon discrimination, inhibition of initiation on leaderless mRNA, and initiator-tRNA selection, thereby establishing a direct role for the IF3 NTD in these initiation processes. A model illustrating how IF3 modulates an inherent function of the 30S subunit is discussed.  相似文献   

2.
Two polypeptides resistant against proteolytic digestion were identified in Thermus thermophilus translation initiation factor 2 (IF2): the central part of the protein (domains II/III), and the C-terminal domain (domain IV). The interaction of intact IF2 and the isolated proteolytic fragments with fMet-tRNAfMet was subsequently characterized. The isolated C-terminal domain was as effective in binding of the 3' end of fMet-tRNAf Met as intact IF2. N-Formylation of Met-tRNAfMet was required for its efficient binding to the C-terminal domain. This suggests that the interaction between the C-terminal domain and the 3' end of fMet-tRNAfMet is responsible for the recognition of fMet-tRNAfMet by IF2 during translation initiation. Moreover, it was demonstrated that fMet-AMP is a minimal ligand of IF2. fMet-AMP inhibits fMet-tRNAfMet binding to IF2 as well as the activity of IF2 in the stimulation of ApUpG-dependent ribosomal binding of fMet-tRNAf Met. Specific interaction of fMet-AMP with IF2 was demonstrated by 1H-NMR spectroscopy. These findings indicate that fMet-AMP and the 3' terminal fMet-adenosine of fMet-tRNAfMet use the same binding site on the C-terminal domain of IF2 and imply that the interaction between the C-terminal domain and the 3' end of fMet-tRNAfMet is primarily responsible for the fMet-tRNAfMet binding and recognition by IF2.  相似文献   

3.
Bacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process. However, these structural signals are unlikely forwarded from IF2-G2 to the C-terminal fMet-tRNA binding domain (IF2-C2) because the connected IF2-C1 and IF2-C2 modules show completely independent mobility, indicating that the bacterial interdomain connector lacks the rigidity that was found in the archaeal IF2 homolog aIF5B.  相似文献   

4.
Eukaryotic initiation factor eIF1 and the functional C-terminal domain of prokaryotic initiation factor IF3 maintain the fidelity of initiation codon selection in eukaryotes and prokaryotes, respectively, and bind to the same regions of small ribosomal subunits, between the platform and initiator tRNA. Here we report that these nonhomologous factors can bind to the same regions of heterologous subunits and perform their functions in heterologous systems in a reciprocal manner, discriminating against the formation of initiation complexes containing codon-anticodon mismatches. We also show that like IF3, eIF1 can influence initiator tRNA selection, which occurs at the stage of ribosomal subunit joining after eIF5-induced hydrolysis of eIF2-bound GTP. The mechanisms of initiation codon and initiator tRNA selection in prokaryotes and eukaryotes are therefore unexpectedly conserved and likely involve related conformational changes induced in the small ribosomal subunit by factor binding. YciH, a prokaryotic eIF1 homologue, could perform some of IF3's functions, which justifies the possibility that YciH and eIF1 might have a common evolutionary origin as initiation factors, and that IF3 functionally replaced YciH in prokaryotes.  相似文献   

5.
Binding of the 50S ribosomal subunit to the 30S initiation complex and the subsequent transition from the initiation to the elongation phase up to the synthesis of the first peptide bond represent crucial steps in the translation pathway. The reactions that characterize these transitions were analyzed by quench-flow and fluorescence stopped-flow kinetic techniques. IF2-dependent GTP hydrolysis was fast (30/s) followed by slow P(i) release from the complex (1.5/s). The latter step was rate limiting for subsequent A-site binding of EF-Tu small middle dotGTP small middle dotPhe-tRNA(Phe) ternary complex. Most of the elemental rate constants of A-site binding were similar to those measured on poly(U), with the notable exception of the formation of the first peptide bond which occurred at a rate of 0.2/s. Omission of GTP or its replacement with GDP had no effect, indicating that neither the adjustment of fMet-tRNA(fMet) in the P site nor the release of IF2 from the ribosome required GTP hydrolysis.  相似文献   

6.
The initiation factor IF3 is platinated with trans-diamminedichloroplatinum(II) and cross-linked to Escherichia coli 30S ribosomal subunit. Two cross-linking sites are unambiguously identified on the 16S rRNA: a major one, in the region 819-859 in the central domain, and a minor one, in the region 1506-1529 in the 3'-terminal domain. Specific features of these sequences together with their particular location within the 30S subunit lead us to postulate a role for IF3, that conciliates topographical and functional observations made so far.  相似文献   

7.
This work describes the isolation of mutations in infC, the structural gene for IF3, using different genetic screens. Among 21 mutants characterised, seven were shown to produce stable variant IF3 proteins unable to fully complement a strain carrying a chromosomal deletion of the infC gene. The mutants were also shown to be unable to normally discriminate against several non-canonical initiation codons such as AUU and ACG. The two mutants with the strongest complementation or discrimination defects carry changes in the C-terminal domain of IF3, which is responsible for the binding of the factor to the 30 S ribosomal subunit. We show that the first mutant has an expected decreased but the second an unexpected increased capacity to bind the 30 S subunit. The in vivo defects of the second mutant are explained by its capacity to bind unspecifically to other targets, as shown by its increased affinity for the 50 S subunit, which is normally not recognised by the factor. Interestingly, this mutant corresponds to a change of an acidic residue that might play a negative discriminatory role in preventing interactions with non-cognate RNAs, as has been reported for acidic residues of aminoacyl-tRNA synthetases shown to be involved in tRNA recognition.  相似文献   

8.
Allen GS  Zavialov A  Gursky R  Ehrenberg M  Frank J 《Cell》2005,121(5):703-712
The 70S ribosome and its complement of factors required for initiation of translation in E. coli were purified separately and reassembled in vitro with GDPNP, producing a stable initiation complex (IC) stalled after 70S assembly. We have obtained a cryo-EM reconstruction of the IC showing IF2*GDPNP at the intersubunit cleft of the 70S ribosome. IF2*GDPNP contacts the 30S and 50S subunits as well as fMet-tRNA(fMet). IF2 here adopts a conformation radically different from that seen in the recent crystal structure of IF2. The C-terminal domain of IF2 binds to the single-stranded portion of fMet-tRNA(fMet), thereby forcing the tRNA into a novel orientation at the P site. The GTP binding domain of IF2 binds to the GTPase-associated center of the 50S subunit in a manner similar to EF-G and EF-Tu. Additionally, we present evidence for the localization of IF1, IF3, one C-terminal domain of L7/L12, and the N-terminal domain of IF2 in the initiation complex.  相似文献   

9.
The eukaryotic translation initiation factor eIF2 delivers Met-tRNAiMet to the ribosomal small subunit in GTP-bound form associated with eIF1, eIF1A, eIF3 and eIF5, and dissociates together with eIF5 as eIF5-eIF2-GDP complex from the ribosomal small subunit after formation of start codon-anticodon base pairing between Met-tRNAiMet and mRNA. The inactive form eIF2-GDP is then exchanged for the active form eIF2-GTP by eIF2B for further initiation cycle. Previous studies showed that the C-terminal domains of eIF5 (eIF5-CTD) and eIF2Bε (eIF2Bε-CTD) have a common eIF2β-binding site for interacting with an N-terminal region of eIF2β (eIF2β-NTD). Here we have reconstructed the complexes of (eIF5-CTD)-(eIF2β-NTD) and (eIF2Bε-CTD)-(eIF2β-NTD) in vitro, and investigated binding mechanism by circular dichroism spectroscopy and small angle X-ray scattering in solution. The results showed the conformation of eIF2β-NTD was changed when bound to partner proteins, whereas the structures of eIF5-CTD and eIF2Bε-CTD were similar in both isolated and complex states. We propose that eIF2β-NTD works as an intrinsically disordered domain which is disorder in the isolated state, but folds into a definite structure when bound to its partner proteins. Such flexibility of eIF2β-NTD is expected to be responsible for its binding capability.  相似文献   

10.
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet‐tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2‐30S interaction, is positioned between the GTP‐binding G2 and the fMet‐tRNA binding C‐terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β‐sheets with each four anti‐parallel strands, followed by a C‐terminal α‐helix. In line with its role as linker between G3 and subdomain C1, this helix has no well‐defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB‐fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA‐binding modules such as IF2‐C2, IF1 and subdomains II of elongation factors EF‐Tu and EF‐G. Structural comparisons have resulted in a model that describes the interaction between IF2‐G3 and the 30S ribosomal subunit.  相似文献   

11.
Tetracycline blocks stable binding of aminoacyl-tRNA to the bacterial ribosomal A-site. Various tetracycline binding sites have been identified in crystals of the 30S ribosomal small subunit of Thermus thermophilus. Here we describe a direct photo- affinity modification of the ribosomal small subunits of Escherichia coli with 7-[3H]-tetracycline. To select for specific interactions, an excess of the 30S subunits over tetracycline has been used. Primer extension analysis of the 16S rRNA revealed two sites of the modifications: C936 and C948. Considering available data on tetracycline interactions with the prokaryotic 30S subunits, including the presented data (E.coli), X-ray data (T.thermophilus) and genetic data (Helicobacter pylori, E.coli), a second high affinity tetracycline binding site is proposed within the 3′-major domain of the 16S rRNA, in addition to the A-site related tetracycline binding site.  相似文献   

12.
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.  相似文献   

13.
During initiation of bacterial protein synthesis, messenger RNA and fMet-tRNAfMet bind to the 30S ribosomal subunit together with initiation factors IF1, IF2, and IF3. Docking of the 30S preinitiation complex to the 50S ribosomal subunit results in a peptidyl-transfer competent 70S ribosome. Initiation with an elongator tRNA may lead to frameshift and an aberrant N-terminal sequence in the nascent protein. We show how the occurrence of initiation errors is minimized by (1) recognition of the formyl group by the synergistic action of IF2 and IF1, (2) uniform destabilization of the binding of all tRNAs to the 30S subunit by IF3, and (3) an optimal distance between the Shine-Dalgarno sequence and the initiator codon. We suggest why IF1 is essential for E. coli, discuss the role of the G-C base pairs in the anticodon stem of some tRNAs, and clarify gene expression changes with varying IF3 concentration in the living cell.  相似文献   

14.
Translation initiation factor IF3 is an essential bacterial protein, consisting of two domains (IF3C and IF3N) separated by a linker, which interferes with ribosomal subunit association, promotes codon-anticodon interaction in the P site, and ensures translation initiation fidelity. Using time-resolved chemical probing, we followed the dynamic binding path of IF3 on the 30S subunit and its release upon 30S-50S association. During binding, IF3 first contacts the platform (near G700) of the 30S subunit with the C domain and then the P-decoding region (near A790) with its N domain. At equilibrium, attained within less than a second, both sites are protected, but before reaching binding equilibrium, IF3 causes additional transient perturbations of both the platform edge and the solvent side of the subunit. Upon 30S-50S association, IF3 dissociates concomitantly with the establishment of the 30S-50S bridges, following the reverse path of its binding with the IF3N-A790 interaction being lost before the IF3C-G700 interaction.  相似文献   

15.
IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.  相似文献   

16.
The fidelity of initiator tRNA (i-tRNA) selection in the ribosomal P-site is a key step in translation initiation. The highly conserved three consecutive G:C base pairs (3GC pairs) in the i-tRNA anticodon stem play a crucial role in its selective binding in the P-site. Mutations in the 3GC pairs (3GC mutant) render the i-tRNA inactive in initiation. Here, we show that a mutation (E265K) in the unique C-terminal tail domain of RluD, a large ribosomal subunit pseudouridine synthase, results in compromised fidelity of initiation and allows initiation with the 3GC mutant i-tRNA. RluD modifies the uridine residues in H69 to pseudouridines. However, the role of its C-terminal tail domain remained unknown. The E265K mutation does not diminish the pseudouridine synthase activity of RluD, or the growth phenotype of Escherichia coli, or cause any detectable defects in the ribosomal assembly in our assays. However, in our in vivo analyses, we observed that the E265K mutation resulted in increased retention of the ribosome binding factor A (RbfA) on 30S suggesting a new role of RluD in contributing to RbfA release, a function which may be attributed to its (RluD) C-terminal tail domain. The studies also reveal that deficiency of RbfA release from 30S compromises the fidelity of i-tRNA selection in the ribosomal P-site.  相似文献   

17.
IF2 is one of three bacterial translation initiation factors that are conserved through all kingdoms of life. It binds the 30S and 50S ribosomal subunits, as well as fMet-tRNAf(Met). After these interactions, fMet-tRNAf(Met) is oriented to the ribosomal P-site where the first amino acid of the nascent polypeptide, formylmethionine, is presented. The C-terminal domain of Bacillus stearothermophilus IF2, which is responsible for recognition and binding of fMet-tRNAf(Met), contains two structured modules. Previously, the solution structure of the most C-terminal module, IF2-C2, has been elucidated by NMR spectroscopy and direct interactions between this subdomain and fMet-tRNAf(Met) were reported. In the present NMR study we have obtained the spectral assignment of the other module of the C-terminal domain (IF2-C1) and determined its solution structure and backbone dynamics. The IF2-C1 core forms a flattened fold consisting of a central four-stranded parallel beta-sheet flanked by three alpha-helices. Although its overall organization resembles that of subdomain III of the archaeal IF2-homolog eIF5B whose crystal structure had previously been reported, some differences of potential functional significance are evident.  相似文献   

18.
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNA(fMet) requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNA(fMet). Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNA(fMet), IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNA(fMet), which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNA(fMet) induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation.  相似文献   

19.
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.  相似文献   

20.
The universally conserved eukaryotic initiation factor (eIF), eIF1A, plays multiple roles throughout initiation: it stimulates eIF2/GTP/Met-tRNAiMet attachment to 40S ribosomal subunits, scanning, start codon selection and subunit joining. Its bacterial ortholog IF1 consists of an oligonucleotide/oligosaccharide-binding (OB) domain, whereas eIF1A additionally contains a helical subdomain, N-terminal tail (NTT) and C-terminal tail (CTT). The NTT and CTT both enhance ribosomal recruitment of eIF2/GTP/Met-tRNAiMet, but have opposite effects on the stringency of start codon selection: the CTT increases, whereas the NTT decreases it. Here, we determined the position of eIF1A on the 40S subunit by directed hydroxyl radical cleavage. eIF1A''s OB domain binds in the A site, similar to IF1, whereas the helical subdomain contacts the head, forming a bridge over the mRNA channel. The NTT and CTT both thread under Met-tRNAiMet reaching into the P-site. The NTT threads closer to the mRNA channel. In the proposed model, the NTT does not clash with either mRNA or Met-tRNAiMet, consistent with its suggested role in promoting the ‘closed’ conformation of ribosomal complexes upon start codon recognition. In contrast, eIF1A-CTT appears to interfere with the P-site tRNA-head interaction in the ‘closed’ complex and is likely ejected from the P-site upon start codon recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号