首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The role of reactive nitrogen species, such as peroxynitrite, in atherogenesis and the protective effect of dietary phenolic compounds are not yet understood. In this study, we sought firstly to determine whether phenolic acids become nitrated by peroxynitrite and then whether phenolic acid nitration can prevent consumption of γ-tocopherol and thus enhance the resistance of LDL to oxidation by peroxynitrite. Coumaric acid was found to be readily nitrated by peroxynitrite and it also demonstrated a protective effect on γ-tocopherol. Of greater significance was its potent inhibition of lipid peroxidation which was equal to that of caffeic acid.  相似文献   

2.
3-Nitrotyrosine is a useful marker for nitric oxide-mediated tissue injury. However, which proteins are preferred peroxynitrite modification targets is unclear. Chondroitin sulfate proteoglycans (CSPGs) abnormally accumulate in cerebrospinal fluid of human neonates with hydrocephalus and may be a target for peroxynitrite modification. We examined (1). whether CSPG core protein can be modified by peroxynitrite in vitro; (2). to what degree in comparison to bovine serum albumin (BSA), the most commonly used nitrated protein standard; (3). whether nitrated CSPGs can be measured directly in biological samples; and (4). whether nitrated proteoglycan concentrations in cerebrospinal fluid correlate with disease. In vitro nitration of bovine aggrecan was performed by exposure to different peroxynitrite concentrations, and 3-nitrotyrosine products were measured. Bovine serum albumin (BSA) nitration was also performed in comparison. A larger percentage of tyrosine residues were nitrated in aggrecan than in BSA under all conditions tested. An enzyme-linked immunosorbent assay (ELISA) for 3-nitrotyrosine consistently overestimated aggrecan nitration when nitrated BSA was used as the standard. This is important as most current assays of nitration in biological samples use nitrated BSA as the standard. Therefore, if nitrated CPSGs were a substantial portion of the nitrated proteins in a sample, total nitrated protein content would be overestimated. Aggrecan retained its function of binding hyaluronic acid despite substantial nitration. A double-sandwich ELISA was developed for nitrated CSPGs in biological samples, using nitrated aggrecan as standard. [Nitrated CSPG] was found to be significantly elevated in preterm hydrocephalus cerebrospinal fluid (P<0.02), but correlated poorly with cerebrospinal fluid [nitric oxide] (P>0.069), suggesting that nitrated CSPG and NO levels may be independant markers of tissue injury. Peroxynitrite-mediated protein tyrosine nitration is a previously unrecognized modification of CSPGs, and may reflect level of brain injury in hydrocephalus.  相似文献   

3.
A cellular consequence of the reaction of superoxide and nitric oxide is enhanced peroxynitrite levels. Reaction of peroxynitrite with manganese superoxide dismutase (MnSOD) causes nitration of the active-site residue Tyr34 and nearly complete inhibition of catalysis. We report the crystal structures at 2.4 A resolution of human MnSOD nitrated by peroxynitrite and the unmodified MnSOD. A comparison of these structures showed no significant conformational changes of active-site residues or solvent displacement. The side chain of 3-nitrotyrosine 34 had a single conformation that extended toward the manganese with O1 of the nitro group within hydrogen-bonding distance (3.1 A) of Nepsilon2 of the second-shell ligand Gln143. Also, nitration of Tyr34 caused a weakening, as evidenced by the lengthening, of a hydrogen bond between its phenolic OH and Gln143, part of an extensive hydrogen-bond network in the active site. Inhibition of catalysis can be attributed to a steric effect of 3-nitrotyrosine 34 that impedes substrate access and binding, and alteration of the hydrogen-bond network that supports proton transfer in catalysis. It is also possible that an electrostatic effect of the nitro group has altered the finely tuned redox potential necessary for efficient catalysis, although the redox potential of nitrated MnSOD has not been measured.  相似文献   

4.
Our previous investigation indicated that insulin can be nitrated by peroxynitrite in vitro. In this study, the preferential nitration site of the four tyrosine residues in insulin molecule was confirmed. Mononitrated and dinitrated insulins were purified by RP-HPLC. Following reduction of insulin disulfide bridges, Native-PAGE indicated that A-chain was preferentially nitrated. Combination of enzymatic digestion of mononitrated insulin with endoproteinase Glu-C, mass spectrometry confirmed that Tyr-A14 was the preferential nitration site when insulin was treated with peroxynitrite. Tyr-A19, maybe, was the next preferential nitration site. According to the crystal structure, Tyr-B26 between the two tyrosine residues in insulin B-chain was likely easier to be nitrated by peroxynitrite.  相似文献   

5.
Peroxynitrite, the product of the radical-radical reaction between nitric oxide and superoxide anion, is a potent oxidant involved in tissue damage in neurodegenerative disorders. We investigated the modifications induced by peroxynitrite in tyrosine residues of proteins from synaptosomes. Peroxynitrite treatment (> or =50 microM) induced tyrosine nitration and increased tyrosine phosphorylation. Synaptophysin was identified as one of the major nitrated proteins and pp60src kinase as one of the major phosphorylated substrates. Further fractionation of synaptosomes revealed nitrated synaptophysin in the synaptic vesicles, whereas phosphorylated pp60src was enriched in the postsynaptic density fraction. Tyrosine phosphorylation was increased by treatment with 50-500 microM peroxynitrite and decreased by higher concentrations, suggesting a possible activation/inactivation of kinases. Immunocomplex kinase assay proved that peroxynitrite treatment of synaptosomes modulated the pp60src autophosphorylation activity. The addition of bicarbonate (CO2 1.3 mM) produced a moderate enhancing effect on some nitrated proteins but significantly protected the activity of pp60src against peroxynitrite-mediated inhibition so that at 1 mM peroxynitrite, the kinase was still more active than in untreated synaptosomes. The phosphotyrosine phosphatase activity of synaptosomes was inhibited by peroxynitrite (> or =50 microM) but significantly protected by CO2. Thus, the increase of phosphorylation cannot be attributed to peroxynitrite-mediated inhibition of phosphatases. We suggest that peroxynitrite may regulate the posttranslational modification of tyrosine residues in pre- and postsynaptic proteins. Identification of the major protein targets gives insight into the pathways possibly involved in neuronal degeneration associated with peroxynitrite overproduction.  相似文献   

6.
Jang B  Han S 《Biochimie》2006,88(1):53-58
Nitration of tyrosine residues is taken as evidence for intracellular formation of peroxynitrite. Cytochrome c (cyt c) can be nitrated by peroxynitrite and nitrated cyt c has been observed in cells and tissues under stress conditions. Here we studied the biochemical properties of nitrated cyt c in order to understand its potential roles in nitrative stress. Nitration of cyt c resulted in disruption of the heme-methionine bond and rapid binding to cyanide. Equilibrium unfolding by guanidine hydrochloride showed that cyt c was slightly destabilized upon nitration but the unfolding transition of nitrated cyt c was highly cooperative indicating that the overall folding was largely preserved. Nitrated cyt c could not be reduced by superoxide and did not support electron transfer between ascorbate and cyt c oxidase. Nitration of cyt c resulted in a tremendous increase in peroxidase activity so that nitrated cyt c rapidly oxidized dihydrodichlorofluorescein even in the presence of a high concentration of glutathione. Enhanced peroxidase activity of nitrated cyt c was responsible for H2O2-induced oxidation of phospholipid membranes and H2O2/NO2--mediated nitration of other proteins. These results suggest that nitration of cyt c by peroxynitrite may exacerbate oxidative damage to mitochondrial proteins and membranes.  相似文献   

7.
Peroxynitrite is a reactive cytotoxic species, capable of nitrating tyrosine residues to form 3-nitrotyrosine. Little is known about the formation and loss of nitrated proteins in vivo. We have measured nitrated proteins, by enzyme-linked immunosorbent assay, in rat skin after exposure to peroxynitrite. Peroxynitrite (100-200 nmol site(-1)) was injected into the skin of anesthetized rats. At the highest dose 78.6 +/- 9.5 pmol mg(-1) protein of nitrated BSA equivalents were measured at 4 h and a significant increase was observed for 24 h after administration in skin samples. The loss of nitrated proteins from skin appeared biphasic with an initial (t(1/2) = 2 h) and slower loss (t(1/2) = 22 h). A major nitrated protein was identified as albumin by Western blot analysis. The data demonstrate that a single exposure to peroxynitrite can lead to the presence of nitrated proteins in skin for at least 24 h. The sustained presence of nitrated proteins may influence the inflammatory process in skin disease.  相似文献   

8.
Myoglobin scavenges peroxynitrite without being significantly nitrated   总被引:1,自引:0,他引:1  
Herold S  Shivashankar K  Mehl M 《Biochemistry》2002,41(45):13460-13472
We have analyzed in detail hemoglobin (Hb) and myoglobin (Mb) after treatment of different forms of these proteins with variable amounts of peroxynitrite. HPLC analyses of the peroxynitrite-treated proteins subjected either to acid hydrolysis or Pronase digestion showed that only very low quantities of 3-nitrotyrosine are formed when equivalent amounts of peroxynitrite are allowed to react with the oxy form of these proteins. Comparable amounts of nitrated amino acids are formed when metMb and metHb are treated with peroxynitrite under analogous conditions, but significantly larger yields are observed with apoMb and metMbCN. Interestingly, in addition we found that also the tryptophan residues of Mb and Hb are nitrated to a low but detectable extent. Taken together, our data suggest that the heme center of Mb may act as an efficient scavenger of peroxynitrite, protecting the globin from nitration. As peroxynitrite can irreversibly inhibit cytochrome c oxidase, oxyMb may utilize an additional important pathway to maintain mitochondrial respiration, that is, rapidly react with peroxynitrite and thus prevent nitration of other cellular components.  相似文献   

9.
The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in hyperoxaluric condition has been proved experimentally. This may result in the formation of the cytotoxic metabolite peroxynitrite, which is capable of causing lipid peroxidation and protein modification. The presence of nitrotyrosine in proteins has been associated with several pathological conditions. The present study investigated the presence of nitrotyrosine in the stone formers Tamm-Horsfall glycoprotein (THP). In vitro nitration of control THP was carried out using peroxynitrite. New Zealand white rabbits were immunized with peroxynitrated THP at 15-day intervals. Antisera collected following the third immunization were assayed for antibody titres using solid-phase ELISA. Antibodies were purified by affinity chromatography. The carbonyl content of control, stone formers and nitrated THP were determined. Western blotting was carried with control, stone formers and nitrated THPs. Immunodiffusion studies demonstrated cross-reaction with nitrated bovine serum albumin. Significant amounts (p < 0.001) of carbonyl content were present in both stone formers and nitrated THPs. Western blot analysis confirmed the presence of nitrated amino acid 3-nitrotyrosine in stone formers, which could bring about structural and functional modifications of THP in hyperoxaluric patients. A cross-reaction with nitrated bovine serum albumin confirms that the raised antibody has certain paratopes similar to the epitope of nitrated protein molecules. Detection of 3-nitrotyrosine in stone formers THP indicates that it is one of the key factors influencing the conversion of THP to a structurally and immunologically altered form during calcium oxalate stone formation.  相似文献   

10.
Abstract

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in hyperoxaluric condition has been proved experimentally. This may result in the formation of the cytotoxic metabolite peroxynitrite, which is capable of causing lipid peroxidation and protein modification. The presence of nitrotyrosine in proteins has been associated with several pathological conditions. The present study investigated the presence of nitrotyrosine in the stone formers Tamm–Horsfall glycoprotein (THP). In vitro nitration of control THP was carried out using peroxynitrite. New Zealand white rabbits were immunized with peroxynitrated THP at 15-day intervals. Antisera collected following the third immunization were assayed for antibody titres using solid-phase ELISA. Antibodies were purified by affinity chromatography. The carbonyl content of control, stone formers and nitrated THP were determined. Western blotting was carried with control, stone formers and nitrated THPs. Immunodiffusion studies demonstrated cross-reaction with nitrated bovine serum albumin. Significant amounts (p<0.001) of carbonyl content were present in both stone formers and nitrated THPs. Western blot analysis confirmed the presence of nitrated amino acid 3-nitrotyrosine in stone formers, which could bring about structural and functional modifications of THP in hyperoxaluric patients. A cross-reaction with nitrated bovine serum albumin confirms that the raised antibody has certain paratopes similar to the epitope of nitrated protein molecules. Detection of 3-nitrotyrosine in stone formers THP indicates that it is one of the key factors influencing the conversion of THP to a structurally and immunologically altered form during calcium oxalate stone formation.  相似文献   

11.
Nitration and inactivation of IDO by peroxynitrite   总被引:2,自引:0,他引:2  
IDO induction can deplete L-tryptophan in target cells, an effect partially responsible for the antimicrobial activities and antiallogeneic T cell responses of IFN-gamma in human macrophages, dendritic cells, and bone marrow cells. L-tryptophan depletion and NO production are both known to have an antimicrobial effect in macrophages, and the interaction of these two mechanisms is unclear. In this study we found that IDO activity was inhibited by the peroxynitrite generator, 3-(4-morpholinyl)sydnonimine, in PMA-differentiated cytokine-induced THP-1 (acute monocytic leukemia) cells and IFN-gamma-stimulated PBMCs, whereas IDO protein expression was unaffected compared with that in untreated cells. Nitrotyrosine was detected in immunoprecipitated (IP)-IDO from PMA-differentiated cytokine-induced THP-1 cells treated with 3-(4-morpholinyl)sydnonimine, but not from untreated cells. Treatment of IP-IDO and recombinant IDO (rIDO) with peroxynitrite significantly decreased enzyme activity. Nitrotyrosine was detected in both peroxynitrite-treated IP-IDO and rIDO, but not in either untreated IP-IDO or rIDO. Peptide analysis by liquid chromatography/electrospray ionization and tandem mass spectrometry demonstrated that Tyr15, Tyr345, and Tyr353 in rIDO were nitrated by peroxynitrite. The levels of Tyr nitration and the inhibitory effect of peroxynitrite on IDO activity were significantly reduced in the Tyr15-to-Phe mutant. These results indicate that IDO is nitrated and inactivated by peroxynitrite and that nitration of Tyr15 in IDO protein is the most important factor in the inactivation of IDO.  相似文献   

12.
Twelve substituted metalloporphyrins (MPs), some of which have been previously characterized with respect to superoxide dismutase and peroxynitrite decomposing activities, were evaluated for their ability to scavenge peroxynitrite in vitro at 37 degrees C. Because the overall effectiveness of MPs as catalytic peroxynitrite scavengers is a function of (1) how fast they react with peroxynitrite, (2) how fast they cycle back to the starting compound, and (3) how well they contain or quench the reactive intermediates generated, all of these properties were evaluated and compared directly under the same conditions. Of the various MPs tested, only the iron and manganese porphyrins showed significant reactivity with peroxynitrite. The Mn(IV) intermediates resulting from oxidation by peroxynitrite were relatively stable and rereduction to the Mn(III) forms was rate-limiting to catalytic decomposition of peroxynitrite. However, in the presence of oxidizeable substrates like phenolics, rereduction of Mn(IV) forms occurred very rapidly and both the Mn- and Fe-porphyrins catalyzed nitration and oxidation by peroxynitrite. Mn- and Fe-porphyrins enhanced the yield of nitrated phenolics by peroxynitrite as much as 5-fold at pH 7.4 and up to 12-fold at pH 9. 1, while total oxidative yield was more than doubled. Nitration enhancement by MPs was effectively inhibited by ascorbate, glutathione, or serum, although much higher concentrations of ascorbate were required to inhibit nitration catalyzed by either Mn or Fe tetramethylpyridyl porphyrin. Catalysis of peroxynitrite nitration by MPs appears to proceed via a radical-mediated reaction mechanism whereby the phenolic substrate rapidly reduces Mn(IV) = O or Fe[IV] = O to the +3 state to yield phenoxyl radical which then combines with the other primary product, nitrogen dioxide. Based on the rate constants and the proposed reaction mechanism, it is reasonable to suggest that Mn and Fe porphyrins could detoxify peroxynitrite in vivo by efficiently trapping the relatively unreactive peroxynitrite anion and, in effect, channeling it into a single reaction pathway which could then be more effectively scavenged by cellular reductants like ascorbate.  相似文献   

13.
Heart carnitine palmitoyl transferase I (CPTI) is inhibited in vivo during endotoxaemia and in vitro by peroxynitrite but the biochemical basis of this inhibition is not known. The aim of this study was to determine which isoform of CPT I is inhibited during endotoxaemia and whether the inhibition is due to increased tyrosine nitration. Cardiac mitochondria were isolated from endotoxaemic suckling rats. To determine whether M- or L-CPTI was inhibited, we carried out titrations with DNP-etomoxir-CoA. Slopes of the titration curves with DNP-etomoxir-CoA were no different between control and endotoxaemia, suggesting that M-CPTI was specifically inhibited. Immunoprecipitation was carried out using an anti-nitrotyrosine antibody. Immunoprecipitated proteins were identified by Western blotting with L- and M-CPTI specific antibodies. L-CPTI was nitrated both in control and in 2- and 6-h endotoxaemia mitochondria but there was no significant difference in the level of nitration. M-CPTI was also nitrated in control mitochondria but nitration was significantly increased at both 2- and 6-h endotoxaemia. Either 10 mM 3-nitrotyrosine plus 40 microg nitrated-albumin or 0.5 M dithionite, during immunoprecipitation, greatly decreased immunopositivity for M- and L-CPTI on WB. M-CPTI appears to be a novel target for peroxynitrite during endotoxaemia, which would alter myocardial substrate selection.  相似文献   

14.
《Free radical research》2013,47(12):1407-1415
Abstract

Nitration-induced protein damage in the placenta leads to impaired blood flow and deficient feto–placental exchange in diabetic pregnancies. This work studied the effect of nitric oxide and peroxynitrite on Cu/Zn SOD activity in rat placentas and evaluated whether Cu/Zn SOD is nitrated in the placenta from diabetic rats at mid-gestation. Protein nitration was evaluated by EIA, Cu/Zn SOD activity by inhibition of the epinephrine auto-oxidation, Cu/Zn SOD expression by western blot and specific nitration by immunoprecipitation. This study found higher levels of protein nitration (p < 0.001), diminished Cu/Zn SOD activity and enhanced protein expression (p < 0.01) in placentas from diabetic rats. Placental Cu/Zn SOD activity was inhibited by peroxynitrite (p < 0.01). Besides, nitration of Cu/Zn SOD was elevated in placentas from diabetic rats (p < 0.01). These results show that rat Cu/Zn SOD can be nitrated, a modification that could lead to the depressed activity of this enzyme found in placentas from diabetic rats.  相似文献   

15.
Zhang YJ  Xu YF  Chen XQ  Wang XC  Wang JZ 《FEBS letters》2005,579(11):2421-2427
Abnormally nitrated tau has been found recently in the neurofibrillary tangles of Alzheimer's disease (AD). However, whether and how nitration of tau is involved in AD pathology is not known. Herein, we found that in vitro incubation of peroxynitrite with recombinant tau resulted in nitration and oligomerization of tau in a dosage-dependent manner. Moreover, the nitrated tau showed a significantly decreased binding activity to taxol-stabilized microtubulesin in vitro. Further study demonstrated that peroxynitrite also induced tau nitration in neuroblastoma N2a cell line, and the nitrated tau was accumulated in the cells. We conclude that abnormal nitration of tau contributes to the impaired biological activity of tau in binding to the microtubules and the aggregation of tau, implying a novel mechanism responsible for the neurodegeneration seen in AD brain.  相似文献   

16.
Although peroxynitrite stimulates apoptosis in many cell types, whether peroxynitrite acts directly as an oxidant or the induction of apoptosis is because of the radicals derived from peroxynitrite decomposition remains unknown. Before undergoing apoptosis because of trophic factor deprivation, primary motor neuron cultures become immunoreactive for nitrotyrosine. We show here using tyrosine-containing peptides that free radical processes mediated by peroxynitrite decomposition products were required for triggering apoptosis in primary motor neurons and in PC12 cells cultures. The same concentrations of tyrosine-containing peptides required to prevent the nitration and apoptosis of motor neurons induced by trophic factor deprivation and of PC12 cells induced by peroxynitrite also prevented peroxynitrite-mediated nitration of motor neurons, brain homogenates, and PC12 cells. The heat shock protein 90 chaperone was nitrated in both trophic factor-deprived motor neurons and PC12 cells incubated with peroxynitrite. Tyrosine-containing peptides did not affect the induction of PC12 cell death by hydrogen peroxide. Tyrosine-containing peptides should protect by scavenging peroxynitrite-derived radicals and not by direct reactions with peroxynitrite as they neither increase the rate of peroxynitrite decomposition nor decrease the bimolecular peroxynitrite-mediated oxidation of thiols. These results reveal an important role for free radical-mediated nitration of tyrosine residues, in apoptosis induced by endogenously produced and exogenously added peroxynitrite; moreover, tyrosine-containing peptides may offer a novel strategy to neutralize the toxic effects of peroxynitrite.  相似文献   

17.
The interaction between peroxynitrite and dopamine and the inhibition of this reaction by plant-derived antioxidants have been investigated. Peroxynitrite promoted the oxidation of dopamine to 6-hydroxyindole-5-one as characterised by HPLC and photodiode array spectra, akin to the products of the tyrosinase-dopamine reaction, but no evidence of dopamine nitration was obtained. Although peroxynitrite did not cause nitration of dopamine in vitro, the catecholamine is capable of inhibiting the formation of 3-nitrotyrosine from peroxynitrite-mediated nitration of tyrosine. The plant-derived phenolic compounds, caffeic acid and catechin, inhibited peroxynitrite-mediated oxidation of dopamine. This effect is attributed to the ability of catechol-containing antioxidants to reduce peroxynitrite through electron donation, resulting in their oxidation to the corresponding o-quinones. The antioxidant effect of caffeic acid and catechin was comparable to that of the endogenous antioxidant, glutathione. In contrast, the structurally related monohydroxylated hydroxycinnamates, p-coumaric acid and ferulic acid, which inhibit tyrosine nitration through a mechanism of competitive nitration, did not inhibit peroxynitrite-induced dopamine oxidation. The findings of the present study suggest that certain plant-derived phenolics can inhibit dopamine oxidation.  相似文献   

18.
Shi WQ  Cai H  Xu DD  Su XY  Lei P  Zhao YF  Li YM 《Regulatory peptides》2007,144(1-3):1-5
Proteins are targets of reactive nitrogen species such as peroxynitrite and nitrogen dioxide. Among the various amino acids in proteins, tyrosine and tryptophan residues are especially susceptible to attack by reactive nitrogen species. On the other hand, protein tyrosine phosphorylation has gained much attention in respect to cellular regulatory events and signal transduction. Peroxynitrite-mediated nitration of peptide YPPPPPW and phosphopeptide pYPPPPPW were studied at pH 7.4. The predominant nitrated products were separated and identified by reverse phase high performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS). The nitration sites were established by tandem electrospray ionization-mass spectrometry (LC-MS/MS). A regulatory effect of tyrosine phosphorylation/dephosphorylation on peptide nitration was observed. YPPPPPW was predominantly nitrated at tyrosine residue while pYPPPPPW was nitrated at tryptophan one. Our results can help in understanding the biochemical significance of the relationship of tyrosine phosphorylation and nitration in proteins.  相似文献   

19.
Peroxynitrite is one of the biological oxidants whose addition to cells has been shown to either activate signaling pathways or lead to cell injury, depending on cell type and oxidant concentration. The intermediacy of free radicals in these processes has been directly demonstrated only during the interaction of peroxynitrite with erythrocytes, a particular cell type, due to its high hemoglobin content. Here, we demonstrate that the addition of peroxynitrite to a macrophage cell line (J774) led to the production of glutathionyl and protein-tyrosyl radicals. The glutathionyl radical was characterized by EPR spin-trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide. Protein-tyrosyl radical formation was suggested by direct EPR spectroscopy and confirmed by EPR spin-trapping experiments with 3,5-dibromo-4-nitrosobenzenesulfonic acid and Western blot analysis of nitrated proteins in treated macrophages. Time dependence studies of free radical formation indicate that intracellular glutathione and unidentified proteins are the initial peroxynitrite targets in macrophages and that their derived radicals trigger radical chain reactions. The results are likely to be relevant to the understanding of the bioregulatory and biodamaging effects of peroxynitrite.  相似文献   

20.
Nitric oxide-derived oxidants such as nitrogen dioxide and peroxynitrite have been receiving increasing attention as mediators of nitric oxide toxicity. Indeed, nitrated and nitrosated compounds have been detected in biological fluids and tissues of healthy subjects and in higher yields in patients under inflammatory or infectious conditions as a consequence of nitric oxide overproduction. Among them, nitrated lipids have been detected in vivo. Here, we confirmed and extended previous studies by demonstrating that nitrolinoleate, chlolesteryl nitrolinoleate, and nitrohydroxylinoleate induce vasorelaxation in a concentration-dependent manner while releasing nitric oxide that was characterized by chemiluminescence-and EPR-based methodologies. As we first show here, diffusible nitric oxide production is likely to occur by isomerization of the nitrated lipids to the corresponding nitrite derivatives that decay through homolysis and/or metal ion/ascorbate-assisted reduction. The homolytic mechanism was supported by EPR spin-trapping studies with 3,5-dibromo-4-nitrosobenzenesulfonic acid that trapped a lipid-derived radical during nitrolinoleate decomposition. In addition to provide a mechanism to explain nitric oxide production from nitrated lipids, the results support their role as endogenous sources of nitric oxide that may play a role in endothelium-independent vasorelaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号