首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Permeabilized rat soleus muscle fibers were subjected to rapid shortening/restretch protocols (20% muscle length, 20 ms duration) in solutions with pCa values ranging from 6.5 to 4.5. Force redeveloped after each restretch but temporarily exceeded the steady-state isometric tension reaching a maximum value approximately 2.5 s after relengthening. The relative size of the overshoot was <5% in pCa 6.5 and pCa 4.5 solutions but equaled 17% +/- 4% at pCa 6.0 (approximately half-maximal Ca2+ activation). Muscle stiffness was estimated during pCa 6.0 activations by imposing length steps at different time intervals after repeated shortening/restretch perturbations. Relative stiffness and relative tension were correlated (p < 0.001) during recovery, suggesting that tension overshoots reflect a temporary increase in the number of attached cross-bridges. Rates of tension recovery (k(tr)) correlated (p < 0.001) with the relative residual force prevailing immediately after restretch. Force also recovered to the isometric value more quickly at 5.7 < or = pCa < or = 5.9 than at pCa 4.5 (ANOVA, p < 0.05). These results show that k(tr) measurements underestimate the rate of isometric force development during submaximal Ca2+ activations and suggest that the rate of tension recovery is limited primarily by the availability of actin binding sites.  相似文献   

2.
The present study examined the effects of Ca(2+) and strongly bound cross-bridges on tension development induced by changes in the concentration of MgADP. Addition of MgADP to the bath increased isometric tension over a wide range of [Ca(2+)] in skinned fibers from rabbit psoas muscle. Tension-pCa (pCa is -log [Ca(2+)]) relationships and stiffness measurements indicated that MgADP increased mean force per cross-bridge at maximal Ca(2+) and increased recruitment of cross-bridges at submaximal Ca(2+). Photolysis of caged ADP to cause a 0.5 mM MgADP jump initiated an increase in isometric tension under all conditions examined, even at pCa 6.4 where there was no active tension before ADP release. Tension increased monophasically with an observed rate constant, k(ADP), which was similar in rate and Ca(2+) sensitivity to the rate constant of tension re-development, k(tr), measured in the same fibers by a release-re-stretch protocol. The amplitude of the caged ADP tension transient had a bell-shaped dependence on Ca(2+), reaching a maximum at intermediate Ca(2+) (pCa 6). The role of strong binding cross-bridges in the ADP response was tested by treatment of fibers with a strong binding derivative of myosin subfragment 1 (NEM-S1). In the presence of NEM-S1, the rate and amplitude of the caged ADP response were no longer sensitive to variations in the level of activator Ca(2+). The results are consistent with a model in which ADP-bound cross-bridges cooperatively activate the thin filament regulatory system at submaximal Ca(2+). This cooperative interaction influences both the magnitude and kinetics of force generation in skeletal muscle.  相似文献   

3.
We examined the influence of cross-bridge cycling kinetics on the length dependence of steady-state force and the rate of force redevelopment (k(tr)) during Ca(2+)-activation at sarcomere lengths (SL) of 2.0 and 2.3 microm in skinned rat cardiac trabeculae. Cross-bridge kinetics were altered by either replacing ATP with 2-deoxy-ATP (dATP) or by reducing [ATP]. At each SL dATP increased maximal force (F(max)) and Ca(2+)-sensitivity of force (pCa(50)) and reduced the cooperativity (n(H)) of force-pCa relations, whereas reducing [ATP] to 0.5 mM (low ATP) increased pCa(50) and n(H) without changing F(max). The difference in pCa(50) between SL 2.0 and 2.3 microm (Delta pCa(50)) was comparable between ATP and dATP, but reduced with low ATP. Maximal k(tr) was elevated by dATP and reduced by low ATP. Ca(2+)-sensitivity of k(tr) increased with both dATP and low ATP and was unaffected by altered SL under all conditions. Significantly, at equivalent levels of submaximal force k(tr) was faster at short SL or increased lattice spacing. These data demonstrate that the SL dependence of force depends on cross-bridge kinetics and that the increase of force upon SL extension occurs without increasing the rate of transitions between nonforce and force-generating cross-bridge states, suggesting SL or lattice spacing may modulate preforce cross-bridge transitions.  相似文献   

4.
The increase in Ca(2+) sensitivity of isometric force development along with sarcomere length (SL) is considered as the basis of the Frank-Starling law of the heart, possibly involving the regulation of cross-bridge turnover kinetics. Therefore, the Ca(2+) dependencies of isometric force production and of the cross-bridge-sensitive rate constant of force redevelopment (k(tr)) were determined at different SLs (1.9 and 2.3 mum) in isolated human, murine, and porcine permeabilized cardiomyocytes. k(tr) was also determined in the presence of 10 mM inorganic phosphate (P(i)), which interfered with the force-generating cross-bridge transitions. The increases in Ca(2+) sensitivities of force with SL were very similar in human, murine, and porcine cardiomyocytes (DeltapCa(50): approximately 0.11). k(tr) was higher (P < 0.05) in mice than in humans or pigs at all Ca(2+) concentrations ([Ca(2+)]) [maximum k(tr) (k(tr,max)) at a SL of 1.9 mum and pCa 4.75: 1.33 +/- 0.11, 7.44 +/- 0.15, and 1.02 +/- 0.05 s(-1), in humans, mice, and pigs, respectively] but k(tr) did not depend on SL in any species. Moreover, when the k(tr) values for each species were expressed relative to their respective maxima, similar Ca(2+) dependencies were obtained. Ten millimolar P(i) decreased force to approximately 60-65% and left DeltapCa(50) unaltered in all three species. P(i) increased k(tr,max) by a factor of approximately 1.6 in humans and pigs and by a factor of approximately 3 in mice, independent of SL. In conclusion, species differences exert a major influence on k(tr), but SL does not appear to modulate the cross-bridge turnover rates in human, murine, and porcine hearts.  相似文献   

5.
We have investigated why fura-2 and Ca(2+)-sensitive microelectrodes report different values for the intracellular free calcium ion concentration ([Ca(2+)]i or its negative log, pCa(i)) of snail neurons voltage-clamped to -50 or -60 mV. Both techniques were initially calibrated in vitro, using calcium calibration solutions that had ionic concentrations similar to those of snail neuron cytoplasm. Pressure injections of the same solutions at resting and elevated [Ca(2+)]i were used to calibrate both methods in vivo. In fura-2-loaded cells these pressure injections generated changes in [Ca(2+)]i that agreed well with those expected from the in vitro calibration. Thus, using fura-2 calibrated in vitro, the average resting [Ca(2+)]i was found to be 38 nM (pCa(i) 7.42 +/- 0.05). With Ca(2+)-sensitive microelectrodes, the first injection of calibration solutions always caused a negative shift in the recorded microelectrode potential, as if the injection lowered [Ca2+]i. No such effects were seen on the fura-2 ratio. When calibrated in vivo the Ca(2+)-sensitive microelectrode gave an average resting [Ca2+]i of approximately 25 nM (pCa(i) 7.6 +/- 0.1), much lower than when calibrated in vitro. We conclude that [Ca(2+)]i in snail neurons is approximately 40 nM and that Ca(2+)-sensitive microelectrodes usually cause a leak at the point of insertion. The effects of the leak were minimized by injection of a mobile calcium buffer.  相似文献   

6.
Fiber isometric tension redevelopment rate (kTR) was measured during submaximal and maximal activations in glycerinated fibers from rabbit psoas muscle. In fibers either containing endogenous skeletal troponin C (sTnC) or reconstituted with either purified cardiac troponin C (cTnC) or sTnC, graded activation was achieved by varying [Ca2+]. Some fibers were first partially, then fully, reconstituted with a modified form of cTnC (aTnC) that enables active force generation and shortening in the absence of Ca2+. kTR was derived from the half-time of tension redevelopment. In control fibers with endogenous sTnC, kTR increased nonlinearly with [Ca2+], and maximal kTR was 15.3 +/- 3.6 s-1 (mean +/- SD; n = 26 determinations on 25 fibers) at pCa 4.0. During submaximal activations by Ca2+, kTR in cTnC reconstituted fibers was approximately threefold faster than control, despite the lower (60%) maximum Ca(2+)-activated force after reconstitution. To obtain submaximal force with aTnC, eight fibers were treated to fully extract endogenous sTnC, then reconstituted with a mixture of a TnC and cTnC (aTnC:cTnC molar ratio 1:8.5). A second extraction selectively removed cTnC. In such fibers containing aTnC only, neither force nor kTR was affected by changes in [Ca2+]. Force was 22 +/- 7% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 24 +/- 8% (mean +/- SD; n = 8) at pCa 4.0, whereas kTR was 98 +/- 14% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 96 +/- 15% (mean +/- SD; n = 8) at pCa 4.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
It is generally recognized that ventricular myosin regulatory light chains (RLC) are approximately 40% phosphorylated under basal conditions, and there is little change in RLC phosphorylation with agonist stimulation of myocardium or altered stimulation frequency. To establish the functional consequences of basal RLC phosphorylation in the heart, we measured mechanical properties of rat skinned trabeculae in which approximately 7% or approximately 58% of total RLC was phosphorylated. The protocol for achieving approximately 7% phosphorylation of RLC involved isolating trabeculae in the presence of 2,3-butanedione monoxime (BDM) to dephosphorylate RLC from its baseline level. Subsequent phosphorylation to approximately 58% of total was achieved by incubating BDM-treated trabeculae in solution containing smooth muscle myosin light chain kinase, calmodulin, and Ca2+ (i.e., MLCK treatment). After MLCK treatment, Ca2+ sensitivity of force increased by 0.06 pCa units and maximum force increased by 5%. The rate constant of force development (ktr) increased as a function of Ca2+ concentration in the range between pCa 5.8 and pCa 4.5. When expressed versus pCa, the activation dependence of ktr appeared to be unaffected by MLCK treatment; however, when activation was expressed in terms of isometric force-generating capability (as a fraction of maximum), MLCK treatment slowed ktr at submaximal activations. These results suggest that basal phosphorylation of RLC plays a role in setting the kinetics of force development and Ca2+ sensitivity of force in cardiac muscle. Our results also argue that changes in RLC phosphorylation in the range examined here influence actin-myosin interaction kinetics differently in heart muscle than was previously reported for skeletal muscle.  相似文献   

8.
Recent work indicates that endotoxemia elicits severe reductions in skeletal muscle force-generating capacity. The subcellular alterations responsible for these decrements have not, however, been fully characterized. One possibility is that the contractile proteins per se are altered in endotoxemia and another is that the mechanism by which these proteins are activated is affected. The purpose of the present study was to assess the effects of endotoxin administration on the contractile proteins by examining the maximum calcium-activated force (F(max)) and calcium sensitivity of single Triton-skinned fibers of diaphragm, soleus, and extensor digitorum longus (EDL) muscles taken from control and endotoxin-treated (8 mg/kg) rats. Fibers were mounted on a force transducer and sequentially activated by serial immersion in solutions of increasing Ca(2+) concentration (i.e., pCa 6.0 to pCa 5.0); force vs. pCa data were fit to the Hill equation. All fibers were typed at the conclusion of studies using gel electrophoresis. F(max), the calcium concentration required for half-maximal activation (Ca(50)), and the Hill coefficient were compared as a function of muscle and fiber type for the control and endotoxin-treated animals. Control group F(max) was similar for diaphragm, soleus, and EDL fibers, i.e., 112.34 +/- 2.64, 111.55 +/- 3.66, and 104.05 +/- 4.33 kPa, respectively. Endotoxin administration reduced the average F(max) for fibers from all three muscles to 80.25 +/- 2.30, 72.47 +/- 2.97, and 78.32 +/- 2.43 kPa, respectively (P < 0.001 for comparison of each to control). All fiber types in diaphragm, soleus, and EDL muscles manifested similar endotoxin-related reductions in F(max). The Ca(50) and the Hill coefficient for all fiber types and all muscles were unaffected by endotoxin administration. We speculate that these alterations in the intrinsic properties of the contractile proteins represent a major mechanism by which endotoxemia reduces muscle force-generating capacity.  相似文献   

9.
Arteries that have developed myogenic tone (MT) are in a markedly different physiological state compared with those that have not, with higher cytosolic [Ca(2+)] and altered activity of several signal transduction pathways. In this study, we sought to determine whether alpha(1)-adrenoceptor-induced Ca(2+) signaling is different in pressurized arteries that have spontaneously developed MT (the presumptive physiological state) compared with those that have not (a common experimental state). At 32 degrees C and intraluminal pressure of 70 mmHg, cytoplasmic [Ca(2+)] was steady in most smooth muscle cells (SMCs). In a minority of cells (34%), however, at least one propagating Ca(2+) wave occurred. alpha(1)-Adrenoceptor activation (phenylephrine, PE; 0.1-10.0 microM) caused strong vasoconstriction and markedly increased the frequency of Ca(2+) waves (in virtually all cells). However, when cytosolic [Ca(2+)] was elevated experimentally in these arteries ([K(+)] 20 mM), PE failed to elicit Ca(2+) waves, although it did elevate [Ca(2+)] (F/F(0)) further and caused further vasoconstriction. During development of MT, the cytosolic [Ca(2+)] (F/F(0)) in individual SMCs increased, Ca(2+) waves disappeared (from SMCs that had them), and small Ca(2+) ripples (frequency approximately 0.05 Hz) appeared in approximately 13% of cells. PE elicited only spatially uniform increases in [Ca(2+)] and a smaller change in diameter (than in the absence of MT). Nevertheless, when cytosolic [Ca(2+)] and MT were decreased by nifedipine (1 microM), PE did elicit Ca(2+) waves. Thus alpha(1)-adrenoceptor-mediated Ca(2+) signaling is markedly different in arteries with and without MT, perhaps due to the elevated [Ca(2+)], and may have a different molecular basis. alpha(1)-Adrenoceptor-induced vasoconstriction may be supported either by Ca(2+) waves or by steady elevation of cytoplasmic [Ca(2+)], depending on the amount of MT.  相似文献   

10.
We hypothesized that 1) hypothyroidism (Hyp) decreases myosin heavy chain (MHC) content per half-sarcomere in diaphragm muscle (Dia(m)) fibers, 2) Hyp decreases the maximum specific force (F(max)) of Dia(m) fibers because of the reduction in MHC content per half-sarcomere, and 3) Hyp affects MHC content per half-sarcomere and F(max) to a greater extent in fibers expressing MHC type 2X (MHC(2X)) and/or MHC type 2B (MHC(2B)). Studies were performed on single Triton X-permeabilized fibers activated at pCa 4.0. MHC content per half-sarcomere was determined by densitometric analysis of SDS-polyacrylamide gels and comparison with a standard curve of known MHC concentrations. After 3 wk of Hyp, MHC content per half-sarcomere was reduced in fibers expressing MHC(2X) and/or MHC(2B). On the basis of electron-microscopic analysis, this reduction in MHC content was also reflected by a decrease in myofibrillar volume density and thick filament density. Hyp decreased F(max) across all MHC isoforms; however, the greatest decrease occurred in fibers expressing fast MHC isoforms (approximately 40 vs. approximately 20% for fibers expressing slow MHC isoforms). When normalized for MHC content per half-sarcomere, force generated by Hyp fibers expressing MHC(2A) was reduced compared with control fibers, whereas force per half-sarcomere MHC content was higher for fibers expressing MHC(2X) and/or MHC(2B) in the Hyp Dia(m) than for controls. These results indicate that the effect of Hyp is more pronounced on fibers expressing MHC(2X) and/or MHC(2B) and that the reduction of F(max) with Hyp may be at least partially attributed to a decrease in MHC content per half-sarcomere but not to changes in force per cross bridge.  相似文献   

11.
The kinetics of Ca(2+)-induced contractions of chemically skinned guinea pig trabeculae was studied using laser photolysis of NP-EGTA. The amount of free Ca(2+) released was altered by varying the output from a frequency-doubled ruby laser focused on the trabeculae, while maintaining constant total [NP-EGTA] and [Ca(2+)]. The time courses of the rise in stiffness and tension were biexponential at 23 degrees C, pH 7.1, and 200 mM ionic strength. At full activation (pCa < 5.0), the rates of the rapid phase of the stiffness and tension rise were 56 +/- 7 s(-1) (n = 7) and 48 +/- 6 s(-1) (n = 11) while the amplitudes were 21 +/- 2 and 23 +/- 3%, respectively. These rates had similar dependencies on final [Ca(2+)] achieved by photolysis: 43 and 50 s(-1) per pCa unit, respectively, over a range of [Ca(2+)] producing from 15% to 90% of maximal isometric tension. At all [Ca(2+)], the rise in stiffness initially was faster than that of tension. The maximal rates for the slower components of the rise in stiffness and tension were 4.1 +/- 0.8 and 6.2 +/- 1.0 s(-1). The rate of this slower phase exhibited significantly less Ca(2+) sensitivity, 1 and 4 s(-1) per pCa unit for stiffness and tension, respectively. These data, along with previous studies indicating that the force-generating step in the cross-bridge cycle of cardiac muscle is marginally sensitive to [Ca(2+)], suggest a mechanism of regulation in which Ca(2+) controls the attachment step in the cross-bridge cycle via a rapid equilibrium with the thin filament activation state. Myosin kinetics sets the time course for the rise in stiffness and force generation with the biexponential nature of the mechanical responses to steps in [Ca(2+)] arising from a shift to slower cross-bridge kinetics as the number of strongly bound cross-bridges increases.  相似文献   

12.
We investigated whether changing thin filament Ca(2+) sensitivity alters the rate of contraction, either during normal cross-bridge cycling or when cross-bridge cycling is increased by inorganic phosphate (P(i)). We increased or decreased Ca(2+) sensitivity of force production by incorporating into rat skinned cardiac trabeculae the troponin C (TnC) mutants V44QTnC(F27W) and F20QTnC(F27W). The rate of isometric contraction was assessed as the rate of force redevelopment (k(tr)) after a rapid release and restretch to the original length of the muscle. Both in the absence of added P(i) and in the presence of 2.5 mM added P(i) 1) Ca(2+) sensitivity of k(tr) was increased by V44QTnC(F27W) and decreased by F20QTnC(F27W) compared with control TnC(F27W); 2) k(tr) at submaximal Ca(2+) activation was significantly faster for V44QTnC(F27W) and slower for F20QTnC(F27W) compared with control TnC(F27W); 3) at maximum Ca(2+) activation, k(tr) values were similar for control TnC(F27W), V44QTnC(F27W), and F20QTnC(F27W); and 4) k(tr) exhibited a linear dependence on force that was indistinguishable for all TnCs. In the presence of 2.5 mM P(i), k(tr) was faster at all pCa values compared with the values for no added P(i) for TnC(F27W), V44QTnC(F27W), and F20QTnC(F27W). This study suggests that TnC Ca(2+) binding properties modulate the rate of cardiac muscle contraction at submaximal levels of Ca(2+) activation. This result has physiological relevance considering that, on a beat-to-beat basis, the heart contracts at submaximal Ca(2+) activation.  相似文献   

13.
To assess the ability of the thin-filament regulatory system to control each stretch-activation (SA) event in the fast beating of asynchronous insect flight muscle (IFM), we obtained fast (3.4 ms/frame) and semistatic (≥ 50 ms) x-ray diffraction recordings for IFM fibers from bumblebees (beating at 170 Hz) and compared the results with those acquired in giant waterbugs (20-30 Hz) and crane flies (40 Hz, semistatic only). In contrast to the well-documented large SA force of waterbug IFMs, the SA force of bumblebee and crane fly IFMs was small compared to their large isometric force. In semistatic recordings, step-stretched bumblebee and crane fly IFMs showed smaller net SA-associated intensity changes in reflections that report myosin attachment to actin and tropomyosin movement toward its activating position. However, fast recordings on bumblebee IFMs showed a fast and large temporary reversal of intensities in these reflections, suggesting that the myosin heads supporting isometric force are dynamically replaced by SA-supporting heads, and that tropomyosin moves to and back from its inactivating position in milliseconds. In waterbug IFMs, the fast temporary reversal of intensities was not obvious. The observed rates of the attachment/detachment of myosin heads and the motion of tropomyosin are fast enough for the thin-filament regulatory system to control each SA event in fast-beating insects.  相似文献   

14.
The effects of 2 and 4 mo of bed rest, with or without exercise countermeasures, on the contractile properties of slow fibers in the human soleus muscle were examined. Mean fiber diameters were 8 and 36% smaller after 2 and 4 mo of bed rest, respectively, than the pre-bed rest level. Maximum tetanic force (P(o)), maximum activated force (F(max)) per cross-sectional area (CSA), and the common-logarithm value of free Ca(2+) concentration required for half-maximal activation (pCa(50)) also decreased after 2 and 4 mo of bed rest. In contrast, maximum unloaded shortening velocity (V(o)) was increased after 2 and 4 mo of bed rest. After 1 mo of recovery, fiber diameters, P(o), F(max) per CSA (P > 0.05), and pCa(50) were increased and V(o) decreased toward pre-bed rest levels. Effects of knee extension/flexion exercise by wearing an anti-G Penguin suit for 10 h daily, and the effects of loading or unloading of the plantar flexors with (Penguin-1) or without (Penguin-2) placing the elastic loading elements of the suit, respectively, were investigated during ~2 mo of bed rest. In the Penguin-1 group, mean fiber diameter, P(o), F(max) per CSA, V(o), and pCa(50) were similar before and after bed rest. However, the responses of fiber size and contractile properties to bed rest were not prevented in the Penguin-2 group, although the degree of the changes was less than those induced by bed rest without any countermeasure. These results indicate that long-term bed rest results in reductions of fiber size, force-generation capacity, and Ca(2+) sensitivity, and enhancement of shortening velocity in slow fibers of the soleus. The data indicate that continuous mechanical loading on muscle, such as stretching of muscle, is an effective countermeasure for the prevention of muscular adaptations to gravitational unloading.  相似文献   

15.
The zebrafish is a potentially important and cost-effective model for studies of development, motility, regeneration, and inherited human diseases. The object of our work was to show whether myofibrils isolated from zebrafish striated muscle represent a valid subcellular contractile model. These organelles, which determine contractile function in muscle, were used in a fast kinetic mechanical technique based on an atomic force probe and video microscopy. Mechanical variables measured included rate constants of force development (k(ACT)) after Ca(2+) activation and of force decay (τ(REL)(-1)) during relaxation upon Ca(2+) removal, isometric force at maximal (F(max)) or partial Ca(2+) activations, and force response to an external stretch applied to the relaxed myofibril (F(pass)). Myotomal myofibrils from larvae developed greater active and passive forces, and contracted and relaxed faster than skeletal myofibrils from adult zebrafish, indicating developmental changes in the contractile organelles of the myotomal muscles. Compared with murine cardiac myofibrils, measurements of adult zebrafish ventricular myofibrils show that k(ACT), F(max), Ca(2+) sensitivity of the force, and F(pass) were comparable and τ(REL)(-1) was smaller. These results suggest that cardiac myofibrils from zebrafish, like those from mice, are suitable contractile models to study cardiac function at the sarcomeric level. The results prove the practicability and usefulness of mechanical and kinetic investigations on myofibrils isolated from larval and adult zebrafish muscles. This novel approach for investigating myotomal and myocardial function in zebrafish at the subcellular level, combined with the powerful genetic manipulations that are possible in the zebrafish, will allow the investigation of the functional primary consequences of human disease-related mutations in sarcomeric proteins in the zebrafish model.  相似文献   

16.
The time course and magnitude of the Ca(2+) fluxes underlying spontaneous Ca(2+) waves in single permeabilized ventricular cardiomyocytes were derived from confocal Fluo-5F fluorescence signals. Peak flux rates via the sarcoplasmic reticulum (SR) release channel (RyR2) and the SR Ca(2+) ATPase (SERCA) were not constant across a range of cellular [Ca(2+)] values. The Ca(2+) affinity (K(mf)) and maximum turnover rate (V(max)) of SERCA and the peak permeability of the RyR2-mediated Ca(2+) release pathway increased at higher cellular [Ca(2+)] loads. This information was used to create a computational model of the Ca(2+) wave, which predicted the time course and frequency dependence of Ca(2+) waves over a range of cellular Ca(2+) loads. Incubation of cardiomyocytes with the Ca(2+) calmodulin (CaM) kinase inhibitor autocamtide-2-related inhibitory peptide (300 nM, 30 mins) significantly reduced the frequency of the Ca(2+) waves at high Ca(2+) loads. Analysis of the Ca(2+) fluxes suggests that inhibition of CaM kinase prevented the increases in SERCA V(max) and peak RyR2 release flux observed at high cellular [Ca(2+)]. These data support the view that modification of activity of SERCA and RyR2 via a CaM kinase sensitive process occurs at higher cellular Ca(2+) loads to increase the maximum frequency of spontaneous Ca(2+) waves.  相似文献   

17.
In this work we tested the hypothesis that skeletal muscle fibers from aging mice exhibit a significant decline in myoplasmic Ca(2+) concentration resulting from a reduction in L-type Ca(2+) channel (dihydropyridine receptor, DHPR) charge movement. Skeletal muscle fibers from the flexor digitorum brevis (FDB) muscle were obtained from 5-7-, 14-18-, or 21-24-month-old FVB mice and voltage-clamped in the whole-cell configuration of the patch-clamp technique according to described procedures (Wang, Z.-M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709-2716). Total charge movement or the DHPR charge movement was measured simultaneously with intracellular Ca(2+) concentration. The maximum charge movement (Q(max)) recorded (mean +/- SEM, in nC microF(-1)) was 53 +/- 3.2 (n = 47), 51 +/- 3.2 (n = 35) (non-significant, ns), and 33 +/- 1.9 (n = 32) (p < 0.01), for the three age groups, respectively. Q(max) corresponding to the DHPR was 43 +/- 3.3, 38 +/- 4.1 (ns), and 25 +/- 3.4 (p < 0.01) for the three age groups, respectively. The peak intracellular [Ca(2+)] recorded at 40 mV (in microM) was 15.7 +/- 0. 12, 16.7 +/- 0.18 (ns), and 8.2 +/- 0.07 (p < 0.01) for the three age groups, respectively. No significant changes in the voltage distribution or steepness of the Q-V or [Ca(2+)]-V relationship were found. These data support the concept that the reduction in the peak intracellular [Ca(2+)] results from a larger number of ryanodine receptors uncoupled to DHPRs in skeletal muscle fibers from aging mammals.  相似文献   

18.
Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca2+. Indirect flight muscle has two TnC isoforms: F1 binding a single Ca2+ in the C-domain, and F2 binding Ca2+ in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca2+. We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca2+ concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca2+ was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The Kd was 1.01 μM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle.  相似文献   

19.
The flight muscles of many insects have a form of regulation enabling them to contract at high frequencies. The muscles are activated by periodic stretches at low Ca2+ levels. The same muscles also give isometric contractions in response to higher Ca2+. We show that the two activities are controlled by different isoforms of TnC (F1 and F2) within single myofibrils. F1 binds one Ca2+ with high affinity in the C-terminal domain and F2 binds one Ca2+ in the C-terminal domain and one exchangeable Ca2+ in the N-terminal domain. We have characterised the isoforms and determined their effect on the development of stretch-activated and Ca2+-activated tension by replacing endogenous TnC in Lethocerus flight muscle fibres with recombinant isoforms. Fibres with F1 gave stretch-activated tension and minimal isometric tension; those with F2 gave Ca2+-dependent isometric tension and minimal stretch-activated tension. Regulation by a TnC responding to stretch rather than Ca2+ is unprecedented and has resulted in the ability of insect flight muscle to perform oscillatory work at low Ca2+ concentrations, a property to which a large number of flying insects owe their evolutionary success.  相似文献   

20.
An increase in coronary perfusion, transversal stretch of the myocardium, increases developed force (F(dev)) (Gregg effect) through activation of stretch-activated ion channels (SACs). Lengthening of the muscle, longitudinal stretch of the myocardium, causes an immediate increase in F(dev) followed by a slow F(dev) increase (Anrep effect). In isometrically contracting perfused papillary muscles of Wistar rats, we investigated whether both effects were based on similar stretch-induced mechanisms by measuring F(dev) and intracellular Ca(2+) concentration ([Ca(2+)](i)) after a muscle length increase from 85% to 95% L(max) (length at which maximal isometric force develops) at low and high coronary perfusion before and after inhibition of SACs with gadolinium (10 micromol/l Gd(3+)). The increase of F(dev) and peak [Ca(2+)](i) by the Gregg effect was of similar magnitude as the Anrep effect (from 3.5 +/- 0.8 to 3.9 +/- 1.2 mN/mm(2) and from 3.0 +/- 0.7% to 3.8 +/- 0.9% normalized [Ca(2+)](i), means +/- SE). SAC blockade completely blunted the increase of F(dev) and peak [Ca(2+)](i) by the Gregg effect; however, it did not affect the Anrep effect. The slow force response, but not the calcium response, was augmented by an increase in coronary perfusion. Therefore, increased coronary perfusion, transversal stretch of the myocardium, and muscle lengthening, longitudinal stretch of the myocardium, increase myocardial contraction in the rat through different stretch-triggered mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号