首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Feeding K+ or Na+ nitrate salts in vivo enhanced the activity of phosphoenolpyruvate carboxylase (PEPC) in the leaf extracts of Alternanthera pungens (C4 plant) and A. sessilis (C3 species). The increase was more pronounced in A. pungens than in A. sessilis. Chloride salts increased the PEPC activity only marginally. However, the sulfate salts were either not effective or inhibitory. Feeding nitrate modulated the regulatory properties of PEPC in A. pungens, resulting in increased KI (malate) and decreased KA (glucose-6-P). The sensitivity of PEPC to malate, which gives a measure of phosphorylation status of the enzyme, indicated that feeding leaves with NO3 enhanced the phosphorylation status of the enzyme. The reduction in PEPC activity due to cycloheximide treatment suggested that increased synthesis of PEPC protein kinase may be one of the reasons for the enhancement in PEPC activity, after the nitrate feeding. We suggest that nitrate salts could be used as a tool to modulate and analyze the properties of PEPC in C3 and C4 plants.  相似文献   

2.
Summary Investigations into the properties of 6-PG dehydrogenase in cell free extracts of Escherichia coli revealed a pH optimum at pH 9.5 with a sharp decline on both sides of the optimum. The addition of 1.0×10-2 m MgCl2 produced maximal activity, whereas higher concentrations caused inhibition. The K m values were 2.5×10-4 m for 6-phosphogluconate and 2.5×10-5 m for NADP+ as substrate. The enzyme was extremely stable for at least 5 hours if stored at 4°C in Tris–NaCl–MgCl2 buffer at pH 7.5. 6-PG dehydrogenase activity was shown to be proportional to cell free extract concentration over the range 0–0.3 mg protein. An assay method based on the new optimal conditions has been established and has been shown to be 33% more sensitive than a number of commonly used methods.Meinem hochverehrten Lehrer Herrn Professor A. Rippel zum 80. Geburtstage.  相似文献   

3.
Gayathri  J.  Parvathi  K.  Raghavendra  A.S. 《Photosynthetica》2000,38(1):45-52
A traditional method is reported for purification of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) from leaves of Amaranthus hypochondriacus L. with a high yield of 50 %, 135-fold purification, and specific activity of 900 mmol kg–1(protein) s–1. PEPC was purified from light-adapted leaves of A. hypochondriacus, involving 40–60 % ammonium sulphate fractionation, followed by chromatography on columns of DEAE-Sepharose, hydroxylapatite (HAP), and Seralose 6-B. The enzyme appeared as a single band on 10 % SDS-PAGE, with a molecular mass of about 100 kDa. Kinetic studies with purified enzyme confirmed the PEPC to be the light-form of the enzyme. Glycerol generally increased the stability of PEPC. The stability and storage of the purified enzyme was studied at temperatures of 4 °C, –20 °C, and liquid nitrogen. PEPC maintained its activity for up to 3 months upon storage with 50 % (v/v) glycerol in liquid nitrogen.  相似文献   

4.
The effect of phosphate, sulfate and other inorganic ions on the activity of phosphoenolpyruvate carboxylase (PEPC) from the C4 plant Cynodon dactylon were investigated for the first time, as well as their interaction with Clc-6-P, AMP and ma-late. Activation of PEPC by phosphate and sulfate ions was demonstrated and it was not dependent on the accompanying cations, something that was not clarified for PEPCs from other plant sources. No activation of this enzyme was observed by nitrate. PEPC activation was found to be competitive with glucoses-phosphate (Clc-6-P) and AMP stimulation and less sensitive to malate inhibition. This work showed that PEPC from C4plants could exhibit similar activation properties with the enzyme from CAM plants and different activation properties in plants of the same type, rendering the study of this enzyme from different plant sources necessary.  相似文献   

5.
Lopez  Y.  Riaño  N.  Mosquera  P.  Cadavid  A.  Arcila  J. 《Photosynthetica》2000,38(2):215-220
In order to study photosynthetic characteristics, phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities as well as soluble protein and chlorophyll contents were determined in leaf and fruit pericarp samples from diverse coffee genotypes (Coffea arabica cv. Colombia, Caturra, Caturra Erecta, San Pacho, Tipica, C. stenophylla, C. eugenioides, C. congensis, C. canephora, C. canephora cv. Arabusta, C. arabica cv. Caturra×C. canephora and Hibrido de Timor. We found a slightly higher PEPC activity in fruit pericarp than in leaves, while RuBPCO activity was much lower in pericarp than leaf tissue. Partial purification of PEPC and RuBPCO was carried out from leaves of C. arabica cv. Caturra and Michaelis-Menten kinetics for RuBPCO (Km CO2 = 5.34 µM), (Km RuBP = 9.09 µM) and PEPC (Km PEP = 19.5 µM) were determined. Leaf tissues of Colombia, Hibrido de Timor, and Caturra consistently showed higher content of protein [55.4–64.4 g kg–1 (f.m.)] than San Pacho, C. stenophylla, Tipica, Caturra Erecta, and Caturra×C. canephora [25.6–36.9 g kg–1 (f.m.)] and C. canephora cv. Arabusta, Borbon, C. congensis, C. eugenioides, and C. canephora [16.1–21.1 g kg–1 (f.m.)].  相似文献   

6.
The mechanism underlying the light effect on phosphoenolpyruvate carboxylase (PEPC) from the C4 plant sorghum (Sorghum vulgare Pers., var Tamaran) leaves was investigated. Following exposure to light a new isozyme of PEPC, specific for the green leaf and responsible for primary CO2 fixation in photosynthesis, was established. Northern blot experiments revealed the presence of PEPC mRNA showing a molecular weight of 3.4 kilobases. During the greening process, concomitant to enzyme activity, PEPC protein and PEPC messenger RNA amounts increased considerably. This photoresponse was shown to be under phytochrome control.  相似文献   

7.
Light modulation of maize leaf phosphoenolpyruvate carboxylase   总被引:4,自引:3,他引:1       下载免费PDF全文
Phosphoenolpyruvate carboxylase (PEPC) was extracted from maize (Zea mays L. cv Golden Cross Bantam T51) leaves harvested in the dark or light and was partially purified by (NH4)2SO4 fractionation and gel filtration to yield preparations that were 80% homogeneous. Malate sensitivity, PEPC activity, and PEPC protein (measured immunochemically) were monitored during purification. As reported previously, PEPC from dark leaves was more sensitive to malate inhibition compared to enzyme extracted from light leaves. Extraction and purification in the presence of malate stabilized the characteristics of the two forms. During gel filtration on Sephacryl S-300, all of the PEPC activity and PEPC protein emerged in a single high molecular weight peak, indicating that no inactive dissociated forms (dimers, monomers) were present. However, there was a slight difference between the light and dark enzymes in elution volume during gel filtration. In addition, specific activity (units at pH 7/milligram PEPC protein) decreased through the peak for both enzyme samples; because the dark enzyme emerged at a slightly higher elution volume, it contained enzyme with a relatively lower specific activity. The variation in specific activity of the dark enzyme corresponded with changes in malate sensitivity. Immunoblotting of samples with different specific activity and malate sensitivity, obtained from gel filtration, revealed only a single polypeptide with a relative molecular mass of 100,000. When the enzyme was extracted and purified in the absence of malate, characteristic differences of the light and dark enzymes were lost, the enzymes eluted at the same volume during gel filtration, and specific activity was constant through the peak. We conclude that maize leaf PEPC exists in situ as a tetramer of a single polypeptide and that subtle conformation changes can affect both enzymic activity and sensitivity to malate inhibition.  相似文献   

8.
To elucidate the photosynthetic physiological characteristics and the physiological inherited traits of rice (Oryza sativa L.) hybrids and their parents, physiological indices of photosynthetic CO2 exchange and chlorophyll fluorescence parameters were measured in leaves of the maize phosphoenolpyruvate carboxylase (PEPC) transgenic rice as the male parent, sp. japonica rice cv. 9516 as the female parent, and the stable JAAS45 pollen line. The results revealed that the PEPC gene could be stably inherited and trans- ferred from the male parent to the JAAS45 pollen line. Moreover, the JAAS45 pollen line exhibited high levels of PEPC activity, manifesting higher saturated photosynthetic rates, photosynthetic apparent quantum yield (AQY), photochemical efficiency of photosystem II and photochemical and non-photochemical quenching, which indicated that the JAAS45 pollen line has a high tolerance to photo-inhibition/photooxidation under strong light and high temperature. Furthermore, JAAS45 was confirmed to still be a C3 plant by δ^13C carbon isotope determination and was demonstrated to have a limited photosynthetic C4 microcycle by feeding with exogenous C4 primary products, such as oxaloacetate or malate, or phosphoenolpyruvate. The present study explains the physiological inherited properties of PEPC transgenic rice and provides an expectation for the integration of traditional breeding and biological technology.  相似文献   

9.
Antiserum was prepared in rabbits against purified alfalfa (Medicago sativa L.) nodule phosphoenolpyruvate carboxylase (PEPC). Immunotitration assays revealed that the antiserum recognized the enzyme from alfalfa nodules, uninoculated alfalfa roots, and from soybean nodules. Tandem-crossed immunoelectrophoresis showed that the PEPC protein from alfalfa roots and nodules was immunologically indistinguishable. The 101 kilodalton polypeptide subunit of alfalfa nodule PEPC was identified on Western blots. The PEPC polypeptide was detected in low quantities in young alfalfa roots and nodules but was present at increased levels in mature nodules. Senescent nodules appeared to contain a reduced amount of the PEPC polypeptide. PEPC was also detected by western blot in some plant- and bacterially-conditioned ineffective alfalfa nodules but was not detected in bacteroids isolated from effective nodules. Alfalfa nodule PEPC is constitutively expressed in low levels in roots. In nodules, expression of PEPC polypeptide increases several-fold, resulting in increased PEPC activity. Antiserum prepared against the C4 PEPC from maize leaves recognized the PEPC enzyme in all legume nodules and roots tested, while the antiserum prepared against alfalfa nodule PEPC also recognized the leaf PEPC of several C4 plant species. Neither antiserum reacted strongly with any C3 leaf proteins. The molecular weight of the PEPC polypeptide from C4 leaves and legume nodules appears to be similar.  相似文献   

10.
The green algaDunaliella salina UTEX 200 was cultured at high (5 percnt;) [CO2] in a medium containing 10 mmol/L of either NO3 or NH4+ as the sole N source. Specific growth rate was 50 percnt; higher for NH4+-grown cells than for their counterparts cultured in the presence of NO3. Cell size, protein content, Rubisco protein, phosphoenolpyruvate carboxylase (PEPC) activity, and light independent carbon fixation were enhanced by growth in the presence of NH4+. On the other hand, maximal photosynthetic rate and cell glycerol concentration were lower when N was supplied as NH4+. The activity of glutamine synthetase was affected very little by the N-source.D. salina UTEX 200 showed some peculiarities in its mechanism of adaptation to high [N] in comparison to other strains previously used for similar studies. This allowed dissection of the underlying mechanism of the growth response to high [N], highlighting the potential role of PEPC, the main anaplerotic enzyme, as a pivotal player in the adaptation of cells to these conditions.  相似文献   

11.
High level of phosphoenolpyruvate carboxylase (PEPC) gene was stably inherited and transferred from the male parent, PEPC transgenic rice, into a female parent, japonica rice cv. 9516. Relative to the female parent, the produced JAAS45 pollen lines exhibited high PEPC activity (17-fold increase) and also higher photosynthetic rates (about 36 %-fold increase). The JAAS45 pollen lines were more tolerant to photoinhibition and to photo-oxidative stress. Furthermore, JAAS45 pollen lines, as well as their male parent, were tested to exhibit a limiting C4 cycle by feeding with exogenous C4 primary products such as oxaloacetate (OAA). Thus the PEPC gene and photosynthetic characteristics of PEPC transgenic rice could be stably transferred to the hybrid progenies, which might open a new breeding approach to the integration of conventional hybridization and biological technology. An erratum to this article is available at .  相似文献   

12.
Phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) cold inactivation was studied in leaf extracts from Atriplex halimus L. Both enzyme activities gradually reduced as the temperature and the total soluble protein decreased. Mg2+ at a concentration of 10 mM stabilized PEPC and PPDK activities against cold inactivation. At low Mg2+ concentration (4 mM), PEPC was strongly protected by phosphoenolpyruvate, glucose-6-phosphate, and, partially, byL-malate, while PPDK was protected by PEP, but not by its substrate, pyruvate. High concentrations of compatible solutes (glycerol, betaine, proline, sorbitol and trehalose) proved to be good protectants for both enzyme activities against cold inactivation. When illuminated leaves were exposed to low temperature, PPDK was partially inactivated, while the activity of PEPC was not altered.  相似文献   

13.
Hadas  Ora  Pinkas  Riki 《Hydrobiologia》1992,235(1):295-301
Monomictic Lake Kinneret is stratified during summer and autumn, resulting in a hypolimnion rich in H2S (3–7 mg 1–1). In winter and spring every year a bloom of dinoflagallate Peridinium gatunense produces an average biomass of 150000 ton wet weight. Part of this biomass sinks to the hypolimnion and sediments where it is decomposed and mineralized, with some of the mineralization due to the activity of sulfate-reducing bacteria (SRB). The sulfate-reduction potential of the upper sediment layer at the deepest part of the lake (42 m) was measured. The activity of the enzyme arylsulfatase was also monitored. Rates of sulfate-reduction ranged from a minimum of 12 nmoles SOf4 p2–-reduced cm–3 day–1 in December before lake overturn to a maximum of 1673 nmoles SOf4 p2– reduced cm–3 day–1 in July during stratification. These rates are considerably higher than those recorded from other freshwater lakes in the world and are probably limited more by the availability of organic matter than by sulfate concentrations.  相似文献   

14.
The extraction of phosphoenolpyruvate carboxylase, PEPC (EC 4.1.1.31) from leaves of Cynodon dactylon (L.) Pers. with phosphate buffer (pH 7.4, 105 mM) was advantageous in comparison to the usual extraction with Tris-HCl buffer (pH 7.4, 100 mM); a higher activity was obtained, which was most evident at low substrate (phosphoenolpyruvate) concentrations. The PEPC activity was stable under dilution or in storage for at least 48 h at room temperature. The effects of phosphate buffer were not due to inhibition of phosphatase(s) action during the extraction, since they were also observed when the phosphates were added after the extraction with Tris-HCl. The phosphate-extracted enzyme was less responsive to both L-malate inhibition and activation by glucose-6-phosphate. The effects of phosphates might be due to preferential exclusion from the enzymic protein domain and, therefore, to a confinement of the enzyme to a fraction of the total volume. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
First leaves and flag leaves of the wheat species Triticum aestivum cv Anza (6×), T. boeoticum Boiss (2×) L. were examined for content of pyruvate, orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and ribulose 1,5-bisphosphate carboxylase (RuBPC) by protein blot analyses using antibodies to maize leaf enzymes and by activity assays. In agreement with previous reports, the amount of RuBPC per mesophyll cell was about 3 times more in the hexaploid species, T. aestivum, than in the diploid species, T. boeoticum, both in first leaves and in flag leaves. In contrast, the level of PPDK polypeptide was nearly 3-fold higher per unit leaf area in the first leaf and 63% higher in the flag leaf of this diploid species compared to this hexaploid species. There was no significant difference in the levels of polypeptide and enzyme activity of PEPC between diploid and hexaploid wheat. Despite this significantly greater level of PPDK in the diploid species, the actual amount of PPDK could still supply only a limited amount of the enzyme activity necessary to provide phosphoenolpyruvate (PEP) for any putative intracellular C4 carbon shuttle providing carbon to RuBPC. Thus, this difference in enzyme amount could not by itself account for the reported high rates of net photosynthesis at high light intensity in T. boeoticum. Together with reported anatomical differences between the diploid and hexaploid species, however, this biochemical difference may be of physiological importance.  相似文献   

16.
To compare the differences in physiology and metabolism between phosphoenolpyruvate carboxylase (PEPC) transgenic rice and its control, untransformed wild rice, dry matter accumulation, soluble sugar, starch and protein contents and enzyme activities were determined in different plant parts during flowering. Results revealed that PEPC transgenic rice had higher dry weights for leaf, stem and sheath as well as panicle than the untransformed wild rice did, with the largest increase in the panicle. Soluble sugar and protein content in the grains of PEPC transgenic rice were significantly enhanced while starch content changed less. PEPC transgenic rice exhibited high levels of PEPC activity, manifesting in high net photosynthetic rates during flowering. Moreover, transgenic rice with high PEPC expression levels also had elevated levels of the enzymes such as sucrose-p-synthase and sucrose synthase, which may confer a higher capacity to assimilate CO2 into sucrose. Little increase in grain starch content was observed in transgenic plants due to the stable activities of starch synthase and Q enzyme. However, the PEPC transgenic rice plant induced the activities of nitrate reductase, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, glutamine synthetase, and asparagine synthase to high levels, as compared with the untransformed rice plant. PEPC activity was correlated with protein content in grains and the enzymes of nitrogen metabolism, suggesting that high PEPC activity in transgenic rice might be able to redirect carbon and nitrogen flow by regulating some enzymes related to carbon or nitrogen metabolisms. These results may help to understand how the C3 plants possessing a C4-like photosynthesis pathway worked by expression of PEPC.  相似文献   

17.
A prenounced decrease in phosphoenolpyruvate earboxylase (PEPC) activity is observed upon dark/light transition in Sedum praealtum D.C., only when glycerol is included in the extraction medium. If glycerol is omitted, the activity extracted in light is initially low, but soon reaches night levels. The stabilization of the light-induced form of the enzyme by glycerol, in crude or desalted extracts, made it possible to study its kinetic properties in comparison to those of the dark form. The behaviour towards substrate (PEP) changes from hyperbolic (dark) to sigmoid (light), S0.5 is increased and the enzymic activity becomes more sensitive to malate inhibition. Quite different activity/pH profiles are also obtained for the two forms of PEPC.It is inferred that the in vivo regulation of PEPC in CAM is effected by a concerted action of light, malate and pH shifting.  相似文献   

18.
Alfalfa (Medicago sativa L.) N-sufficient plants were fed 1·5 mM N in the form of NO3, NH4+ or NO3 in conjunction with NH4+, or were N-deprived for 2 weeks. The specific activity of phosphoenolpyruvate carboxylase (PEPC) from the non-nodulated roots of N-sufficient plants was increased in comparison with that of N-deprived plants. The PEPC value was highest with NO3 nutrition, lowest with NH4+ and intermediate in plants that were fed mixed salts. The protein was more abundant in NO3-fed plants than in either NH4+- or N mixed-fed plants. Nitrogen starvation decreased the level of PEPC mRNA, and nitrate was the N form that most stimulated PEPC gene expression. The malate content was significantly lower in NO3-deprived than in NO3-sufficient plants. Root malate accumulation was high in NO3-fed plants, but decreased significantly in plants that were fed with NH4+. The effect of malate on the desalted enzyme was also investigated. Root PEPC was not very sensitive to malate and PEPC activity was inhibited only by very high concentrations of malate. Asparagine and glutamine enhanced PEPC activity markedly in NO3-fed plants, but failed to affect plants that were either treated with other N types or N starved. Glutamate and citrate inhibited PEPC activity only at optimal pH. N-nutrition also influenced root nitrate and ammonium accumulation. Nitrate accumulated in the roots of NO3- and (NO3 + NH4+)-fed plants, but was undetectable in those administered NH4+. Both the nitrate and the ammonium contents were significantly reduced in NO3- and (NO3 + NH4+)-starved plants. Root accumulation of free amino acids was strongly influenced by the type of N administered. It was highest in NH4+-fed plants and the most abundant amides were asparagine and glutamine. It was concluded that root PEPC from alfalfa plants is N regulated and that nitrate exerts a strong influence on the PEPC enzyme by enhancing both PEPC gene expression and activity.  相似文献   

19.
This review attempts to summarize the large body of information on the structure, regulation and biosynthesis of the enzyme phosphoenolpyruvate carboxylase in C4 plants which has accumulated particularly since the appearance of the last review in 1987. Among the major discoveries are the involvement of protein phosphorylation-dephosphorylation cascade in the light activation of the enzyme, extraction and characteristics of PEPC-protein serine kinase, dynamic changes in oligomeric state of the enzyme in response to pH or temperature, isolation of multiple cDNAs encoding different forms of PEPC and cloning and expression of maize/sorghum PEPC in transgenic tobacco or transformed E. coli cells. Further experiments using advanced techniques of biochemistry and molecular biology would help in understanding the molecular mechanism of reaction, regulation of enzyme activity, gene expression and evolutionary pattern of C4 PEPC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号