首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An N-ethylmaleimide-sensitive phosphate transport protein has been isolated from rat liver mitochondria, substantially purified, and reconstituted into phospholipid vesicles. Purified inner mitochondrial membrane vesicles depleted of F1-ATPase by urea treatment proved to be the most satisfactory starting material. Treatment of these membrane vesicles with Triton X-100 resulted in solubilization of the phosphate transport protein. Further purification was achieved using hydroxylapatite powder. Polyacrylamide gel electrophoresis of the purified fraction in sodium dodecyl sulfate indicated the presence of two Coomassie blue-staining bands with apparent Mr's of 30,000 and 35,000. Labeling of the 35,000 Mr band by the Pi transport inhibitor diazobenzene sulfonate was reduced markedly by prior treatment of the mitochondria with the inhibitor N-ethylmaleimide. The purified fraction containing both proteins could be reconstituted into liposomes prepared from purified asolectin. Phosphate efflux from these vesicles was inhibited by N-ethylmaleimide, by the impermeant mercurial agent, p-chloromercuribenzoate, and by diazobenzene sulfonate. Treatment of the purified fraction with N-ethylmaleimide prior to incorporation into liposomes resulted in a reconstituted system incapable of catalyzing Pi efflux. These studies summarize the first detailed attempt to purify the Pi/H+ transport system from rat liver mitochondria and emphasize the need to commence the purification with purified inner membrane vesicles depleted of F1-ATPase. In addition, these studies show that the final fraction contains a reconstitutively active transport system which when incorporated into phospholipid vesicles has its essential sulfhydryl groups oriented outward. Finally, it is shown that the purified fraction also contains a 30,000 Mr component.  相似文献   

2.
It is known that the administration of parathyroid hormone to dogs results in phosphaturia and decreased phosphate transport in brush-border vesicles isolated from the kidneys of those dogs. Parathyroid hormone has been shown to activate adenylate cyclase at the basal-lateral membrane of the renal proximal tubular cell. It has been postulated that parathyroid hormone-induced phosphaturia is effected through phosphorylation of brush-border protein by membrane-bound cAMP-dependent protein kinase. An experimental system was designed such that phosphorylation of brush-border vesicles and Na+-stimulated solute transport could be studied in the same preparations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane vesicles revealed cAMP-dependent phosphorylation of 2 protein bands (Mr = 96,000 and 62,000), which was enhanced by exposure of the inside of the membrane vesicles to ATP and cAMP. Cyclic AMP-dependent phosphorylation of brush-border vesicles was accompanied by inhibition of Na+-stimulated Pi but not D-glucose transport or 22Na+ uptake. When renal brush-border vesicles from parathyroidectomized and normal dogs were phosphorylated in vitro in the presence and absence of cAMP, both the cAMP-dependent phosphorylation and inhibition of Na+-stimulated Pi transport were greater in vesicles isolated from kidneys of parathyroidectomized dogs relative to control animals. We conclude that the cAMP-dependent phosphorylation of brush-border membrane-vesicle proteins is associated with specific inhibition of Na+-stimulated Pi transport. The phosphaturic action of parathyroid hormone (PTH) could be mediated through the cAMP-dependent phosphorylation of specific brush-border membrane proteins.  相似文献   

3.
The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites, nucleotides, and cofactors through this membrane and thereby connect and/or regulate cytoplasm and matrix functions. ATP-Mg is transported in exchange for phosphate, but no protein has ever been associated with this activity. We have isolated three human cDNAs that encode proteins of 458, 468, and 489 amino acids with 66-75% similarity and with the characteristic features of the mitochondrial carrier family in their C-terminal domains and three EF-hand Ca(2+)-binding motifs in their N-terminal domains. These proteins have been overexpressed in Escherichia coli and reconstituted into phospholipid vesicles. Their transport properties and their targeting to mitochondria demonstrate that they are isoforms of the ATP-Mg/Pi carrier described in the past in whole mitochondria. The tissue specificity of the three isoforms shows that at least one isoform was present in all of the tissues investigated. Because phosphate recycles via the phosphate carrier in mitochondria, the three isoforms of the ATP-Mg/Pi carrier are most likely responsible for the net uptake or efflux of adenine nucleotides into or from the mitochondria and hence for the variation in the matrix adenine nucleotide content, which has been found to change in many physiopathological situations.  相似文献   

4.
The tricarboxylate transporter has been purified in reconstitutively active form from rat liver mitochondria. The transporter was extracted from mitoplasts with Triton X-114 in the presence of cardiolipin and citrate and was then purified by sequential chromatography on hydroxylapatite, Matrex Gel Orange A, Matrex Gel Blue B, and Affi-Gel 501. Analysis of the purified material via sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of one main protein band with an apparent molecular mass of 32.5 kDa. Upon incorporation into phospholipid vesicles, the purified transporter catalyzed a 1,2,3-benzenetricarboxylate-sensitive citrate/citrate exchange with a specific transport activity of 3240 nmol/4 min/mg of protein. This value was enhanced 831-fold with respect to the starting material. Substrate competition studies indicated that the reconstituted transport could be substantially inhibited by isocitrate, malate, and phosphoenolpyruvate, but not by alpha-ketoglutarate, succinate, malonate, pyruvate, or inorganic phosphate. Moreover, in addition to 1,2,3-benzenetricarboxylate, the reconstituted exchange was sensitive to the anion transport inhibitor n-butylmalonate but was insensitive to phenylsuccinate, alpha-cyano-4-hydroxycinnamate, and carboxyatractyloside. Finally, studies with covalent modifying agents indicated the purified transporter was inhibited by sulfhydryl reagents and by diethyl pyrocarbonate, 2,3-butanedione, phenylglyoxal, and pyridoxal 5-phosphate. In conclusion, these studies describe the first procedure to yield a highly purified tricarboxylate transport protein that both displays a high specific transport activity and can be obtained in quantities that readily enable further structural as well as functional studies. Based on its substrate specificity and inhibitor sensitivity, the purified 32.5-kDa protein appears to represent the complete tricarboxylate transport system found in rat liver mitochondria. Finally, new information is presented concerning the effect of covalent modifying reagents on the function of this transporter.  相似文献   

5.
The abilities of different GTP-binding proteins to serve as phosphosubstrates for the epidermal growth factor (EGF) receptor/tyrosine kinase have been examined in reconstituted phospholipid vesicle systems. During the course of these studies we discovered that a low molecular mass, high affinity GTP-binding protein from bovine brain (designated as the 22-kDa protein) served as an excellent phosphosubstrate for the tyrosine-agarose-purified human placental EGF receptor. The EGF-stimulated phosphorylation of the purified 22-kDa protein occurs on tyrosine residues, with stoichiometries approaching 2 mol of 32Pi incorporated/mol of [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-binding sites. The EGF-stimulated phosphorylation of the brain 22-kDa protein requires its reconstitution into phospholipid vesicles. No phosphorylation of this GTP-binding protein is detected if it is simply mixed with the purified EGF receptor in detergent solution or if detergent is added back to lipid vesicles containing the EGF receptor and the 22-kDa protein. The EGF-stimulated phosphorylation of this GTP-binding protein is also markedly attenuated by guanine nucleotides, i.e. GTP, GTP gamma S, or GDP, suggesting that maximal phosphorylation occurs when the GTP-binding protein is in a guanine nucleotide-depleted state. Purified preparations of the 22-kDa phosphosubstrate do not cross-react with antibodies against the ras proteins. However, they do cross-react against two different peptide antibodies generated against specific sequences of the human platelet (and placental) GTP-binding protein originally designated Gp (Evans, T., Brown, M. L., Fraser, E. D., and Northrup, J. K. (1986) J. Biol. Chem. 261, 7052-7059) and more recently named G25K (Polakis, P. G., Synderman, R., and Evans, T. (1989) Biochem. Biophys. Res. Commun. 160, 25-32). When highly purified preparations of the human platelet Gp (G25K) protein are reconstituted with the purified EGF receptor into phospholipid vesicles, an EGF-stimulated phosphorylation of the platelet GTP-binding protein occurs with a stoichiometry approaching 2 mol of 32Pi incorporated/mol of [35S]GTP gamma S-binding sites. As is the case for the brain 22-kDa protein, the EGF-stimulated phosphorylation of the platelet GTP-binding protein is attenuated by guanine nucleotides. Overall, these results suggest that the brain 22-kDa phosphosubstrate for the EGF receptor is very similar, if not identical, to the Gp (G25K) protein. Although guanine nucleotide binding to the brain 22-kDa protein or to the platelet. GTP-binding protein inhibits phosphorylation, the phosphorylated GTP-binding proteins appear to bind [35S]GTP gamma S slightly better than their nonphosphorylated counterparts.  相似文献   

6.
Y Briand  R Debise  R Durand 《Biochimie》1975,57(6-7):787-796
Phosphate transport in mitochondria was investigated with respect to its inhibition by NEM. The reactivity of the Pi carrier SH groups was influenced by phosphate or ionophores during preincubation before the addition of NEM. Furthermore in order to obtain some mitochondrial protein fractions where the typical effects of phosphate and ionophores on [14C]-NEM fixations were observed, mitochondria were submitted to hypotonic treatment and sonication. The following results were obtained: 1. -- Phosphate and grisorixin (a new ionophore of the nigericin group) decreased the inhibition of phosphate transport by NEM. The same effect was observed for [14C]-NEM incorporation. 2. -- Valinomycin increased [14C]-NEM incorporation. The valinomycin effect was abolished by phosphate. ClCCP alone affected [14C]-NEM incorporation slightly. Valinomycin plus ClCCP decreased NEM inhibition of phosphate transport and [14C]-NEM incorporation like grisorixin. 3. -- The variability of SH group reactivity can be interpreted by a control of SH group accessibility by transmembrane delta pH as previously suggested. 4. -- Typical effects of phosphate or ionophores were observed in whole pig heart and rat liver mitochondria. These effects were enhanced in the same supernatant protein fraction resulting from sonication in pig heart mitochondria : phosphate decreased [14C]-NEM incorporation by 1,50 nmoles/mg protein, grisorixin by 0.95 nmoles, whereas valinomycin increased it by 0.75 nmoles. For rat liver mitochondria the phosphate effect and the valinomycin increased it by 0.75 nmoles. For rat liver mitochondria the phosphate effect valinomycin effect on [14C]-NEM incorporation were observed in the subparticular fraction obtained after sonification.  相似文献   

7.
Brush-border membrane vesicles prepared from rabbit kidney cortex were incubated at 37 degrees C for 30 min with phosphatidylinositol-specific phospholipase C. This maneuver resulted in a release of approx. 85% of the brush-border membrane-linked enzyme alkaline phosphatase as determined by its enzymatic activity. Transport of inorganic [32P]phosphate (100 microM) by the PI-specific phospholipase C-treated brush-border membrane vesicles was measured at 20-22 degrees C in the presence of an inwardly directed 100 mM Na+ gradient. Neither initial uptake rates, as estimated from 10-s uptake values (103.5 +/- 6.8%, n = 7 experiments), nor equilibrium uptake values, measured after 2 h (102 +/- 3.4%) were different from controls (100%). Control and PI-specific phospholipase C-treated brush-border membrane vesicles were extracted with chloroform/methanol to obtain a proteolipid fraction which has been shown to bind Pi with high affinity and specificity (Kessler, R.J., Vaughn, D.A. and Fanestil, D.D. (1982) J. Biol. Chem. 257, 14311-14317). Phosphate binding (at 10 microM Pi) by the extracted proteolipid was measured. No significant difference in binding was observed between the two types of preparations: 31.0 +/- 9.37 in controls and 29.8 +/- 8.3 nmol/mg protein in the proteolipid extracted from PI-specific phospholipase C-treated brush-border membrane vesicles. It appears therefore that alkaline phosphatase activity is essential neither for Pi transport by brush-border membrane vesicles nor for Pi binding by proteolipid extracted from brush-border membrane. These results dissociate alkaline phosphatase activity, but not brush-border membrane vesicle transport of phosphate, from phosphate binding by proteolipid.  相似文献   

8.
The Na+-dependent uptake of alanine into plasma membrane vesicles from rat liver was inhibited by N-ethylmaleimide (NEM) and by mersalyl. NEM did not inhibit alanine-independent Na+ uptake and the inhibition of alanine transport by NEM was protected by pre-incubation with an excess of substrate. It was therefore concluded that NEM acted by binding to the alanine carrier. A protein of Mr 20 000 was found to bind NEM with a concentration dependence parallel to the NEM inhibition of alanine transport. The inhibition of binding of [3H]NEM to this protein by mersalyl had a concentration dependence similar to that of the inhibition of transport by mersalyl. Preincubation with L-alanine, but not with D-alanine, led to protection of the Mr 20 000 protein from binding NEM. It is concluded that this protein is an essential component of the alanine transport system.  相似文献   

9.
K S Leonards  H Kutchai 《Biochemistry》1985,24(18):4876-4884
An essential feature of the function of the Ca2+-ATPase of sarcoplasmic reticulum (SR) is the close coupling between the hydrolysis of ATP and the active transport of Ca2+. The purpose of this study is to investigate the role of other components of the SR membrane in regulating the coupling of Ca2+-ATPase in SR isolated from rabbit skeletal muscle, reconstituted SR, and purified Ca2+-ATPase/phospholipid complexes. Our results suggest that (1) it is possible to systematically alter the degree of coupling obtained in reconstituted SR preparations by varying the [KC1] present during cholate solubilization, (2) the variation in coupling is not due to differences in the permeability of the reconstituted SR vesicles to Ca2+, and (3) vesicles reconstituted with purified Ca2+-ATPase are extensively uncoupled under our experimental conditions regardless of the lipid/protein ratio or phospholipid composition. In reconstituted SR preparations prepared by varying the [KC1] present during cholate treatment, we find a direct correlation between the relative degree of coupling between ATP hydrolysis and Ca2+ transport and the level of the 53-kilodalton (53-kDa) glycoprotein of the SR membrane. These results suggest that the 53-kDa glycoprotein may be involved in regulating the coupling between ATP hydrolysis and Ca2+ transport in the SR.  相似文献   

10.
The mechanism of glucose 6-phosphate transport by Escherichia coli   总被引:5,自引:0,他引:5  
To evaluate anion exchange as the mechanistic basis of sugar phosphate transport, natural and artificial membranes were used in studies of glucose 6-phosphate (Glc-6-P) and inorganic phosphate (Pi) accumulation by the uhpT-encoded protein (UhpT) of Escherichia coli. Experiments with intact cells demonstrated that UhpT catalyzed the neutral exchange of internal and external Pi, and work with everted as well as right-side-out membrane vesicles showed further that UhpT mediated the heterologous exchange of Pi and Glc-6-P. When loaded with Pi, but not when loaded with morpholinopropanesulfonate (MOPS), everted vesicles took up Glc-6-P to levels 100-fold above medium concentration in a reaction unaffected by the ionophores valinomycin, valinomycin plus nigericin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Similarly, right-side-out vesicles were capable of Glc-6-P transport, but only if a suitable internal countersubstrate was available. Thus, in MOPS-loaded vesicles, oxidative metabolism established a proton-motive force that supported proline or Pi accumulation, but transport of Glc-6-P was found only if vesicles could accumulate Pi during a preincubation. After reconstitution of UhpT into proteoliposomes it was possible to show as well that the level of accumulation of Glc-6-P (17 to 560 nmol/mg of protein) was related directly to the internal concentration of Pi. These results are most easily understood if the transport of glucose 6-phosphate in E. coli occurs by anion exchange rather than by nH+/anion support.  相似文献   

11.
The dicarboxylate carrier from rat liver mitochondria was purified by the Amberlite/hydroxyapatite procedure and reconstituted in egg yolk phospholipid vesicles by removing the detergent with Amberlite. The efficiency of reconstitution was optimized with respect to the ratio of detergent/phospholipid, the concentration of phospholipid and the number of Amberlite column passages. In the reconstituted system the incorporated dicarboxylate carrier catalyzed a first-order reaction of malate/phosphate exchange. V of the reconstituted malate/phosphate exchange was determined to be 6000 mumol/min per g protein at 25 degrees C. This value was independent of the type of substrate present at the external or internal space of the liposomes (malate, phosphate or malonate). The half-saturation constant was 0.49 mM for malate, 0.54 mM for malonate and 1.41 mM for phosphate. The activation energy of the exchange reaction was determined to be 95.8 kJ/mol. The transport was independent of the external pH in the range between pH 6 and 8.  相似文献   

12.
The mechanism of phosphate permeation in purified bean mitochondria   总被引:1,自引:0,他引:1  
The permeability properties and mechanism of Pi transport wereinvestigated in purified bean mitochondria.
  1. Purified bean mitochondria are impermeable to small moleculesand ions. However, Pi, arsenate, acetate and formate can enterthe osmotically active space of bean mitochondria.
  2. Nigericinor the association of valinomycin and FCCP cause mitochondrialswelling in isoosmotic potassium phosphate.
  3. The SH-blockingreagents mersalyl, pHMB and NEM inhibit variousmitochondrialfunctions dependent on the translocation of Piand arsenateacross the membrane. These include the respirationstimulatedby ADP, Ca2++Pi, and K++valinomycin +Pi; the swellingin ammoniumphosphate medium and, in the presence of nigericin,in potassiumphosphate medium; the energy-linked yalinomycin-inducedswellingand the subsequent CICCP-induced shrinking. The uncoupler-stimulatedrespiration, as well as the other processes when acetate issubstituted for Pi, are not influenced by SH reagents.
  4. Mersalyland pHMB cause complete inhibition at about 20 nmoles/mgprotein,whereas, NEM is effective at about 1 µmole/mgprotein.The inhibition by mersalyl and pHMB, but not that byNEM, issigmoidal and reversed by 2-mercaptoethanol. Non-inhibitoryamounts of mersalyl protect the Pi transport from irreversibleinhibition by NEM.
  5. We concluded that a carrier-mediated transportsystem for Piis present in bean mitochondria, and that someof its propertiesare similar to the Pi carrier of animal mitochondria.
(Received June 5, 1975; )  相似文献   

13.
Extraction of Escherichiacoli ML 308-225 membrane vesicles with cholate yields a particulate fraction containing 10 to 15% of the phospholipid and about 70% of the protein of intact vesicles. Addition of phospholipid to the particulate fraction in the presence of cholate, followed by sonication and removal of detergent by gel filtration yields a vesicular preparation that exhibits lac carrier function as judged by transient increases in 6′-(N-dansyl)aminohexyl-1-thio-β-D-galactopyranoside fluorescence in the presence of either a lactose diffusion gradient or an artificially-generated membrane potential (interior negative). Activity is not observed in the absence of phospholipid, in the presence of N-ethylmaleimide or in analogous preparations from ML 30 vesicles that do not contain the β-galactoside transport system.  相似文献   

14.
Membrane vesicles were prepared from Azotobacter vinelandii spheroplasts by lysis in either potassium phosphate (pH 7.0) or Tris1-acetate (pH 7.8) buffers. These 2 types of preparations differ considerably in their properties: (1) Examination by scanning electron microscopy reveals that the Pi vesicles consist primarily of closed structures 0.6–0.8 μm in diameter with a rough or particulate surface similar to that of spheroplasts. The Tris vesicles are significantly smaller, 0.1–0.3 μm in diameter, and have a much smoother surface structure. (2) Antisera from rabbits immunized with A. vinelandii lipopolysaccharide antigen will agglutinate Pi vesicles but not Tris vesicles. (3) Tris vesicles have a fourfold higher specific activity of latent H+-ATPase than Pi vesicles. After exposure to Triton X-100 similar ATPase activities are observed for both types of vesicles. (4) Pi vesicles transport calcium in the presence of ATP or lactate at less than 30% of the rates observed for Tris vesicles. (5) Tris vesicles have less than 22% of the transport capacity of Pi vesicles for accumulation of labeled sucrose and less than 3% of the capacity for valinomycin-induced uptake of rubidium observed during respiration. (6) Quinacrine fluorescence intensity is reduced by 30% during lactate oxidation and 20% during ATP hydrolysis by Tris vesicles. Under similar conditions, fluorescence in Pi vesicles is quenched by only 7% and less than 2%, respectively. These findings suggest that Pi vesicles have the normal orientation of the intact cell whereas Tris vesicles have an inverted topology.  相似文献   

15.
The phosphorylation in vitro, on serine residues by endogenous casein kinase 2, of the clathrin beta light chain (33 kDa) of rat liver coated vesicles requires the presence of poly(L-lysine) which acts through binding to the beta light chain. The phosphorylation of other proteins is also increased in the presence of poly(L-lysine) and casein kinase 2. In contrast, the phosphorylation of the upper band of the 50-kDa protein doublet from rat liver coated vesicles is inhibited. Rat liver coated vesicles display a protein phosphatase activity which preferentially dephosphorylates clathrin beta light chain. This activity is different from the protein phosphatase which dephosphorylates the 50-kDa protein. This enzyme seems to be unrelated to the ATP/Mg-dependent protein phosphatase, or the polycation-stimulated protein phosphatases, which dephosphorylate the 50-kDa protein and beta light chain very efficiently, but with a different specificity. After dissociation of coated vesicles the beta-light-chain phosphatase activity is recovered in the membrane fraction. This phosphatase activity is inhibited by 50 microM orthovanadate and 5 mM p-nitrophenyl phosphate but not by 10 mM EDTA.  相似文献   

16.
The receptor for both insulin and epidermal growth factor (EGF) from human placental membranes, after crosslink labeling with 125I-labeled insulin and EGF, can be absorbed to an organomercurial-agarose derivative (Affi-Gel 501) and can be recovered from the gel by elution with dithiothreitol (DTT). Pretreatment of crosslink-labeled membranes with N-ethylmaleimide (NEM) blocks the ability of the receptor to react with the organomercurial column. NEM also abolishes the protein kinase activity of both receptors. Under appropriate conditions, insulin can promote the reaction of the insulin receptor with the organomercurial-agarose derivative. For both the insulin and EGF receptors, our results provide an avenue for the isolation of the sulfhydryl-containing receptor domains that may play a role in the control of receptor function.  相似文献   

17.
The phosphate transport protein from beef heart mitochondria has been purified on a large scale by hydroxylapatite chromatography in the presence of sodium dodecyl sulfate and urea. As shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver stain), the pure phosphate transport protein preparation consists of two protein bands (alpha and beta, ratio 1:1) with similar mobilities (34 kDa) which display identical peptide maps if fragmented with either CNBr or HCl/dimethyl sulfoxide/HBr. The complete amino acid composition of phosphate transport protein is presented. Quantitative determination of N-terminal amino acids underlines the purity of the preparation and shows for alpha and beta the identical amino-terminals H2N-Ala-Val-Glu-Glu-Glx-Tyr-. Qualitative digestion shows that carboxypeptidase A is able to release at least three amino acids from the C termini of the alpha as well as the beta band of phosphate transport protein. The nature of these two protein bands is discussed. The sum of phosphate transport protein (alpha + beta) per total mitochondrial protein amounts to 2.3% or 1.4 nmol of phosphate transport protein (34 kDa) per nmol of cytochrome b.  相似文献   

18.
We studied fusion of negatively charged artificial phospholipid vesicles (liposomes) in the presence of two electrophoretic fractions (molecular mass of about 90 and 50 kdalton) of latrotoxin-like (L) protein. It was shown that both fractions are capable of causing liposome fusion in acidic media. Treatment of native preparations of L protein with NEM depressed their fusogenic activity. Some common characteristics of L protein and well-known fusogenic proteins allow us to account for the possibility of participation of L protein in fusion of the membranes in the cell.  相似文献   

19.
The tricarboxylate carrier has recently been purified from rat liver mitochondria by three distinct scientific groups using different methods. A 37–38-kDa protein has been prepared by silca gel 60 chromatography by our group (Claeys and Azzi, 1989; Glerumet al., 1990). The specific citrate transport activity of this preparation is not significantly different from that measured in mitochondria and it is inhibitable by 1,2,3-benzenetricarboxylic acid. Bisacciaet al. (1990) have reported the isolation of a 30-kDa protein by Celite 535 chromatography, and Kaplan's group (Kaplanet al., 1990) have isolated a 32.5-kDa protein by Matrex Orange, Matrex Blue, and Affi-Gel chromatography. Peptide mapping has failed to support any structural homologies between the 37–38-kDa and the 30–32.5-kD proteins. The 38-kD protein is N-terminally blocked. The peptides obtained by several cleavage procedures have been partially sequenced. Their sequence information has been used to obtain different cDNA clones by a dual approach, the polymerase chain reaction and screening of a ZAP cDNA library. The largest cDNA which could be isolated is 2,986 bp in length and contains a 1071-bp-long open reading frame and an unusually long 3 untranslated region, both of which have been completely sequenced. The protein sequence of the carrier from the first in-frame methionine is 322 amino acids in length and exhibits a molecular mass of 35,546. Comparison of the protein sequence to the sequences of the four members of the mitochondrial carrier protein family (ADP/ATP carrier, phosphate carrier, 2-oxoglutarate/malate carrier, and uncoupling protein) does not reveal significant similarity (cf. Walkeret al., 1987). A tripartite internal homology, which is a characteristic of these proteins, is not present in the sequence of the tricarboxylate carrier protein. The mRNA for the tricarboxylate carrier is expressed in rat liver and brain, but not in rat heart.  相似文献   

20.
Plasma membrane vesicles isolated from intact rat liver (normal hepatocyte) or cultured rat H4 hepatoma cells retain Na+-dependent uptake of 2-aminoisobutyric acid mediated by System A. The carrier was inactivated in normal liver membrane vesicles by either N-ethylmaleimide (NEM) or p-chloromercuribenzene sulfonate (PCMBS). The concentrations required to produce half-maximal inhibition were approximately 370 and 110 microM for NEM and PCMBS, respectively. In contrast, transport of System A in H4 hepatoma membrane vesicles was sensitive to PCMBS (K 1/2 = 180 microM), yet totally unaffected by NEM at concentrations up to 5 mM. Substrate-dependent protection from PCMBS activation was observed for the System A activity in H4 hepatoma membranes, but not in vesicles from normal hepatocytes. Subsequent inactivation of the substrate-protected carrier by sulfhydryl-specific reagents, added following the removal of the protective amino acid, suggests that one or more cysteine residues become less reactive in the presence of System A substrates. Treatment of solubilized membrane proteins with NEM prior to reconstitution into artificial proteoliposomes showed that the selective inactivation by NEM of the carrier in normal liver membranes is not dependent on the lipid environment or on the integrity of the plasma membrane. The results support the hypothesis that there are inherent differences in the System A carriers that are present in normal and transformed liver tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号