首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Nicotinamide attenuates retinal ischemia and light insults to neurones   总被引:1,自引:1,他引:0  
The aim of the present studies was to determine whether nicotinamide is effective in blunting the negative influence of ischemia/reperfusion to the rat retina in situ and of light to transformed retinal ganglion cells (RGC-5 cells) in culture. Ischemia was delivered to the retina of one eye of rats by raising the intraocular pressure. Nicotinamide was administered intraperitoneally just before ischemia and into the vitreous immediately after the insult. Electroretinograms (ERGs) of both eyes were recorded before and 5 days after ischemia. Seven days after ischemia, retinas were analysed for the localization of various antigens. Retinal and optic nerve extracts were also prepared for analysis of specific proteins and mRNAs. Also, RGC-5 cells in culture were given a light insult (1000 lux, 48 and 96 h) and evidence for reduced viability and apoptosis determined by a variety of procedures. Nicotinamide was added to some cultures to see whether it reversed the negative effect of light. Ischemia/reperfusion to the retina affected the localization of Thy-1, neuronal nitric oxide synthase (NOS) and choline acetyltransferase (ChAT), the a- and b-wave amplitudes of the ERG, the content of various retinal and optic nerve proteins and mRNAs. Significantly, nicotinamide statistically blunted many of the effects induced by ischemia/reperfusion which included the activation of poly-ADP-ribose polymerase (PARP). Light-induced apoptosis of RGC-5 cells in culture was attenuated by nicotinamide and the PARP inhibitor NU1025. The presented data show that nicotinamide attenuates injury to the retina and RGC-5 cells in culture caused by ischemia/reperfusion and by light, respectively. Evidence is provided to suggest that nicotinamide acts as a PARP inhibitor and possibly an antioxidant.  相似文献   

2.
The aim of the present studies was to characterise cell death following inhibition of mitochondrial complex I with rotenone in a transformed cell line (RGC-5 cells) and to examine the neuroprotective properties of the flavonoids genistein, epigallocatechin gallate (EGCG), epicatechin (EC) and baicalin. Rotenone-induced cell death of RGC-5 cells results in a generation of reactive oxygen species, a breakdown of DNA, the translocation of membrane phosphatidylserine, an up-regulation of haemoxygenase-1 and is unaffected by necrostatin-1 (inhibitor of necroptosis), z-VAD-fmk (pan caspase inhibitor) or NU1025 (PARP inhibitor) but attenuated with SP600125 (JNK inhibitor). Rotenone-induced toxicity of RGC-5 cells also caused an activation of mitogen-activated kinases indicated by an up-regulation and translocation into mitochondria of p-c-Jun, pJNK and pp38. Exposure of RGC-5 cells to rotenone does not affect apoptosis inducing factor or significantly stimulate caspase-3 activity. EGCG and EC both significantly blunt rotenone toxicity of RGC-5 cells at concentrations of 50 μM while genistein and baicalin were without effect. Significantly, genistein is approximately 20 times less efficacious than EGCG (IC50 2.5 μM) and EC (IC50 1.5 μM) at inhibiting sodium nitroprusside-induced lipid peroxidation. These studies show that rotenone toxicity of RGC-5 cells is neither necroptosis nor caspase-dependent apoptosis but involves the activation of mitogen-activated kinases and is inhibited by a JNK inhibitor, EGCG and EC. Genistein attenuates lipid peroxidation less efficaciously than EC and EGCG and does not affect rotenone toxicity of RGC-5 cells.  相似文献   

3.
Endothelins exert pathological effects in the eye and much interest centres on their role in causing retinal neuronal death in ischemic diseases like glaucoma. In the present study the influence of the non-selective endothelin antagonist, sulfisoxazole on raised intraocular pressure-induced ischemia to the rat retina was investigated. Moreover, in vitro studies on primary rat retinal cultures were undertaken to see whether sulfisoxazole is able to blunt the toxic effect of lipopolysaccharide (LPS) to retinal neurones.

In order to determine whether sulfisoxazole provides protection to the retina the a- and b-wave amplitudes of the electroretinogram (ERG), the localisation of retinal choline acetyltransferase (ChAT), nitric oxide synthase (nNOS) and Thy-1 and the retinal mRNA levels of Thy-1 and FGF-2 were deduced in retinas subjected to ischemia in the absence or presence of sulfisoxazole. The results showed that the ischemia-induced changes to the a- and b-wave amplitudes of the ERG and changes associated with the localisation of ChAT, nNOS and Thy-1 to be significantly blunted by sulfisoxazole. However, while the ischemia-induced changes to Thy-1 and FGF-2 mRNAs were reduced by sulfisoxazole, the reduction was non-significant.

The in vitro studies provided support for the protective effect of sulfisoxazole. Here, it was clearly shown that sulfisoxazole attenuated the elevation of nitric oxide (deduced by measuring nitrite) and the reduction in numbers of GABA-containing neurones caused by LPS.

The present study provides evidence for the first time that endothelin antagonist can protect the retina from ischemic-like insults as occurs in glaucoma.  相似文献   


4.
Oxidative stress to RGC-5 cells in culture was delivered by exposure to a combination of glutamate (Glu) and buthionine-S,R-sulfoximine (BSO). The effect of the insult on cell survival was quantified by the resazurin-reduction and a dead/live assays. Moreover, breakdown of DNA, the localisation of phosphatidylserine and reactive radical species (ROS) and its quantification were determined. In addition, various proteins and mRNAs were studied using Western blot, real time PCR and immunocytochemistry. ACS14, its sulfurated moiety ACS1 and aspirin were tested for their ability to blunt the negative effects of Glu/BSO on RGC-5 cells. In addition assays were carried out to see whether any of these substances influenced glutathione (GSH). Glu/BSO dose-dependently kills RGC-5 cells by a mechanism that involves an elevation of ROS accompanied by a breakdown of DNA, expression of phosphatidylserine and the activation of p38 MAPK. The process is unaffected by the pan caspase inhibitor z-VAD-fmk, does not involve the activation of apoptosis inducing factor (AIF) but is sensitive to active necrostatin-1. In cell viability studies (resazurin-reduction assay), ACS1 and ACS14 equally counteracted the negative effects of 5mM Glu/BSO to RGC-5 cells but aspirin was only effective with a milder oxidative stress (1 mM Glu/BSO). In all other assays ACS14 was very much more effective than aspirin at counteracting the influence of 5mM Glu/BSO. Moreover, ACS14 and ACS1 directly stimulated GSH while aspirin was ineffective. In addition the neuroprotecive effect of ACS14 was specifically blunted by the non-specific potassium channel blocker glibenclamide. Also the up-regulation of Bcl-2, HO-1 and XIAP induced by 5mM Glu/BSO were all attenuated to a greater extent by ACS14 (20 μM) than aspirin (20 μM). These data show that ACS14 is a very effective neuroprotectant when compared with aspirin. ACS14 maintains its aspirin characteristics and has the ability to release H(2)S. The combined multiple actions of aspirin and H(2)S in the form of ACS14 is worthy to consider for possible use in the treatment of glaucoma.  相似文献   

5.
Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-κB p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 ± 0.7 to 1.2 ± 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-κB p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-κB p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-κB p65.  相似文献   

6.
The vertebrate retina is known to contain three classes of photoreceptor cells: cones and rods responsible for vision, and intrinsically photoresponsive retinal ganglion cells (RGCs) involved in diverse non-visual functions such as photic entrainment of daily rhythms and pupillary light responses. In this paper we investigated the potential intrinsic photoresponsiveness of the rat RGC line, RGC-5, by testing for the presence of visual and non-visual opsins and assessing expression of the immediate-early gene protein c-Fos and changes in intracellular Ca(2+) mobilization in response to brief light pulses. Cultured RGC-5 cells express a number of photopigment mRNAs such as retinal G protein coupled receptor (RGR), encephalopsin/panopsin (Opn3), neuropsin (Opn5) and cone opsin (Opn1mw) but not melanopsin (Opn4) or rhodopsin. Opn5 immunoreactivity was observed in RGC-5 cells and in the inner retina of rat, mainly localized in the ganglion cell layer (GCL). Furthermore, white light pulses of different intensities and durations elicited changes both in intracellular Ca(2+) levels and in the induction of c-Fos protein in RGC-5 cell cultures. The results demonstrate that RGC-5 cells expressing diverse putative functional photopigments display intrinsic photosensitivity which accounts for the photic induction of c-Fos protein and changes in intracellular Ca(2+) mobilization. The presence of Opn5 in the GCL of the rat retina suggests the existence of a novel type of photoreceptor cell.  相似文献   

7.
In the present study, oxygen–glucose deprivation followed by reperfusion (OGD/R), an in vitro model of ischemia, was used to evaluate the neuroprotective effect of isoquercetin in primary culture of rat cortical neuronal cells. It was found that isoquercetin administered prior to the insult could prevent OGD/R-induced intracellular calcium concentrations ([Ca2+]i) increase, lactate dehydrogenase (LDH) release and cell viability decrease. For the first time, isoquercetin is described as a neuroprotective agent that potentially explains the alleviation and prevention from OGD/R-induced injury in neurons. Mechanistic studies showed that the neuroprotective effect of isoquercetin was carried out by anti-inflammatory signaling pathway of inhibiting protein expression of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB), and mRNA expression of TNF-α and IL-6, accompanied by the anti-apoptotic signaling pathway of deactivation of extracellular-regulated kinase (ERK), Jun kinase (JNK) and p38, and inhibition of activity of caspase-3. Therefore, these studies highlighted the confirmation of isoquercetin, a flavonoid compound, as an anti-inflammation and anti-apoptosis factor which might be used as a therapeutic strategy for the ischemia/reperfusion (I/R) brain injury and related diseases.  相似文献   

8.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (-)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

9.
Previous studies have shown that light impinging on the retina in situ has the capacity to kill neuronal and non-neuronal cells in vitro by interacting directly with mitochondrial constituents. A number of fluorophores are associated with mitochondria which can potentially absorb different wave-lengths of light, including cytochrome oxidase. The aim of the present study was to compare the death mechanism of a light insult to RGC-5 cells in culture with that of sodium azide. Sodium azide’s main toxic action is in inhibiting the function of cytochrome oxidase in the mitochondrial electron transport chain. Our studies showed that light and sodium azide kill RGC-5 cells via different mechanisms although some similarities do occur. Both inducers of cell death caused the generation of reactive oxygen species (ROS), the expression of phosphatidylserine, the breakdown of DNA and the activation of p38 MAPK, resulting in its translocation from the nucleus to the cytoplasm. However, light-induced cell death occurs via necroptosis, in that it was inhibited by necrostatin-1 and was caspase-independent. This was not the case for sodium azide, where the death process was caspase-dependent, occurred via apoptosis and was unaffected by necrostatin-1. Moreover, light caused an activation of the apoptosis inducing factor (AIF), c-Jun, JNK and HO-1, but it did not affect alpha fodrin or caspase-3. In contrast, sodium azide caused the activation of alpha fodrin and the stimulation of caspase-3 content without influencing AIF, c-Jun, JNK or HO-1. Therefore we conclude that light does not have a specific action on cytochrome oxidase in mitochondria to cause cell death.  相似文献   

10.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (?)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

11.
Myocardial taurine,development and vulnerability to ischemia   总被引:1,自引:0,他引:1  
Modi P  Suleiman MS 《Amino acids》2004,26(1):65-70
Summary. Depleting intracellular taurine in heart cells improves their resistance to ischemia and reperfusion injury. The aim of this work was to see whether physiologically low levels of endogenous taurine also reflect a reduced vulnerability of the myocardium to cardiac insults. The myocardial concentration of taurine was measured during different stages of development and compared with vulnerability to ischemia and reperfusion injury in the rat and in pediatric patients undergoing cardiac surgery.Rat hearts with relatively lower levels of taurine were significantly more resistant to an ischemic inult and there was a strong negative correlation between taurine content and recovery. Childrens hearts had significantly lower taurine levels compared to infants hearts which was consistent with their known increased resistance to an ischemic cardioplegic insult (Imura et al., 2001). This work shows that the changes in the concentration of myocardial taurine during development correlate with vulnerability to ischemia where low myocardial taurine is associated with improved recovery upon reperfusion.  相似文献   

12.
Ischemia/reperfusion injury during liver transplantation is a major cause of primary nonfunctioning graft for which there is no effective treatment other than retransplantation. Adenosine prevents ischemia-reperfusion-induced hepatic injury via its A2A receptors. The aim of this study was to investigate the role of A2A receptor agonist on apoptotic ischemia/reperfusion-induced hepatic injury in rats. Isolated rat livers within University of Wisconsin solution were randomly divided into four groups: (1) continuous perfusion of Krebs-Henseleit solution through the portal vein for 165 minutes (control); (2) 30-minute perfusion followed by 120 minutes of ischemia and 15 minutes of reperfusion; (3) like group 2, but with the administration of CGS 21680, an A2A receptor agonist, 30 microg/100 ml, for 1 minute before ischemia; (4) like group 3, but with administration of SCH 58261, an A2A receptor antagonist. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results showed that at 1 minute of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with CGS (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0002). The reduction in postischemic apoptotic hepatic injury in the CGS-treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). In conclusion, the administration of A2A receptor agonist before induction of ischemia can attenuate postischemic apoptotic hepatic injury and thereby minimize liver injury. Apoptotic hepatic injury seems to be mediated through caspase-3 activity.  相似文献   

13.
Bcl-2 protects against both apoptotic and necrotic death induced by several cerebral insults. We and others have previously demonstrated that defective herpes simplex virus vectors expressing Bcl-2 protect against various insults in vitro and in vivo, including cerebral ischemia. Because the infarct margin may be a region that is most amenable to treatment, we first determined whether gene transfer to the infarct margin is possible using a focal ischemia model. Since ischemic injury with and without reperfusion may occur by different mechanisms, we also determined whether Bcl-2 protects against focal cerebral ischemic injury either with or without reperfusion in rats. Bax expression, cytochrome c translocation and activated caspase-3 expression were also assessed. Viral vectors overexpressing Bcl-2 were delivered to the infarct margin. Reperfusion resulted in larger infarcts than permanent occlusion. Bcl-2 overexpression significantly improved neuron survival in both ischemia models. Bcl-2 overexpression did not alter overall Bax expression, but inhibited cytosolic accumulation of cytochrome c and caspase-3 activation. Thus, we provide the first evidence that gene transfer to the infarct margin is feasible, that overexpression of Bcl-2 protects against damage to the infarct margin induced by ischemia with and without reperfusion, and that Bcl-2 overexpression using gene therapy attenuates apoptosis-related proteins. This suggests a potential therapeutic strategy for stroke.  相似文献   

14.
Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has been shown to promote apoptosis in cancer cells. However, the role of EGCG in endothelial cells following ischemia/reperfusion (I/R) injury remains unclear. In the present study, we investigated the mechanisms by which EGCG enhances I/R-induced cell growth inhibition and apoptosis in human umbilical vein endothelial cells (HUVECs). Our results showed that EGCG treatment caused cell proliferation inhibition during I/R injury, and this effect was associated with increased p27 and p21 levels and reduced cyclin D1 level. Moreover, treatment of cells with EGCG resulted in increase of caspase-3 and Bax and decrease of Bcl-2, enhancing I/R-induced apoptosis. Interestingly, EGCG decreased I/R-induced phosphorylation of AKT and its downstream substrates Foxo1 and Foxo3a and ERK1/2. In contrast, EGCG increased JNK1/2 and c-Jun phosphorylation. Furthermore, both wortamannin (PI3K inhibitor) and U0126 (MEK1/2 inhibitor) markedly enhanced EGCG-induced apoptosis during I/R, whereas SP600125 (JNK inhibitor) attenuated the action of EGCG. Taken together, our study for the first time suggest that EGCG is able to enhance growth arrest and apoptosis of HUVECs during I/R injury, at least in part, through inhibition of AKT and ERK1/2 and activation of JNK1/2 signaling pathways.  相似文献   

15.
目的:探讨在体情况下,骨骼肌缺血后处理对兔缺血/再灌注心肌坏死和凋亡的影响。方法:新西兰大白兔36只,随机分成3组(每组随机选取6只进行梗死范围的测定,另外6只进行凋亡测定):①假手术组(Sham组);②缺血/再灌注组(I/R组);③远端后处理组(RPostC组)。在缺血前、后及再灌注60 min、120 min分别抽血测定肌酸激酶(CK),乳酸脱氢酶(LDH)的活性。采用伊文思兰(evans blue)和三苯基氯化四氮唑(TTC)染色方法确定心肌缺血区范围以及心肌坏死区范围。用Tunel法检测兔心肌缺血区细胞凋亡情况,免疫组织化学方法检测心肌缺血区蛋白caspase-3、Bcl-2及Bax的表达。结果:RPostC组心肌坏死程度、再灌注末CK活性较I/R组明显减低。RPostC组缺血区心肌Tunel阳性指数显著低于I/R组(21.79%±1.07%vs35.81%±1.10%,P<0.05)。而RPostC组缺血区心肌细胞caspase-3阳性指数显著低于I/R组(25.03%±1.16%vs39%±2.43%,P<0.05)。与Sham组比较,I/R组及RPostC组Bax蛋白表达指数、Bcl-2蛋白表达指数均升高;但RPostC组的Bax/Bcl-2比值降低,而I/R组的Bax/Bcl-2比值升高。与I/R组相比较,RPostC组Bax蛋白表达指数及Bax/Bcl-2比值显著降低,Bcl-2表达指数显著升高,差异均有统计学意义。结论:远端后处理能够明显的减少缺血/再灌注心肌细胞的坏死和凋亡,其减轻心肌细胞凋亡的机制可能与抑制促凋亡基因caspase-3的活化及Bcl-2表达的上调有关。  相似文献   

16.
Heat shock protein A12B (HSPA12B) is the newest member of a recently defined subfamily of proteins distantly related to the 70-kDa family of heat shock proteins (HSP70) family. HSP70s play a crucial role in protecting cells, tissues, organs and animals from various noxious conditions. Here we studied the dynamic expression changes and localization of HSPA12B after middle cerebral artery occlusion (MCAO) with reperfusion induced ischemic insult processes in adult rats. Apoptosis, as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, was also increased in the peri-ischemic cortex compared to non-ischemic hemisphere. The expression of HSPA12B was strongly induced in the ischemic hemisphere of MCAO reperfusion rats in vivo. In vitro studies indicated that the up-regulation of HSPA12B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knockdown of HSPA12B in cultured differentiated PC12 cells by siRNA showed that HSPA12B inhibited the expression of active caspase-3. Collectively, these results suggested that HSPA12B may be required for protecting neurons from ischemic insults.  相似文献   

17.
Cardiosphere-derived cells (CDCs) and bone marrow mesenchymal stem cells (MSCs) are popularly used in stem cell therapy for myocardial regeneration. The cell type that survives and maintains stem cell characteristics in the adverse microenvironment following ischemia–reperfusion injury is presumed to be ideal for transplantation. The study was therefore aimed at identifying the cell type with relatively greater resistance to ischemia–reperfusion injury. CDCs were isolated from the right atrial appendage and MSCs from bone marrow of patients who underwent coronary artery bypass graft surgery. Ischemia–reperfusion injury was simulated in vitro by subjecting the cells to hypoxia (0.5% O2) followed by reintroduction of oxygen (HR injury). Greater resistance of CDCs to HR injury was apparent from the decreased expression of senescence markers and lower proportion of apoptotic cells (one-sixth of that in MSCs). HR injury retarded cell cycle progression in MSCs. Consequent to HR injury, cell migration and secretion of stromal-derived growth factor were stimulated, significantly in CDCs. The differentiation to myocyte lineage and angiogenesis assessed by tube formation ability was better for CDCs. Release of vascular endothelial growth factor was relatively more in CDCs and was further stimulated by HR injury. Differentiation to osteogenic and angiogenic lineage was stimulated by HR injury in MSCs. Compared to MSCs, CDCs appear to be the cell of choice for promoting myocardial regeneration by virtue of its survival capacity in the event of ischemic insult along with higher proliferation rate, migration efficiency, release of growth factors with paracrine effects and differentiation to cardiac lineage.  相似文献   

18.
A novel free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), is used for the treatment of acute ischemic stroke and is protective in several animal models of organ injury. We tested whether edaravone is protective against acute liver warm ischemia/reperfusion injury in the rat by acting as a radical scavenger. When edaravone was administered prior to ischemia and at the time of initiation of the reperfusion, liver injury was markedly reduced. Production of oxidants in the liver in this model was assessed in vivo by spin-trapping/electron spin resonance (ESR) spectroscopy. Ischemia/reperfusion caused an increase in free radical adducts rapidly, an effect markedly blocked by edaravone. Furthermore, edaravone treatment blunted ischemia/reperfusion-induced elevation in pro-inflammatory cytokines, infiltration of leukocytes and lipid peroxidation in the liver. These results demonstrate that edaravone is an effective blocker of free radicals in vivo in the liver after ischemia/reperfusion, leading to prevention of organ injury by limiting the deleterious effects of free radicals.  相似文献   

19.
The purpose of the present study was to determine whether edible seaweed, Eisenia bicyclis, is effective in blunting the negative influence of N-methyl-D-aspartate (NMDA) on rat retinas and of oxidative stress-induced transformed retinal ganglion cell (RGC-5 cell line) death. The ethanol extract of E. bicyclis (EEEB) significantly attenuated the negative insult of L: -buthionine-(S,R)-sulfoximine plus glutamate on RGC-5 cells. Treatment of the RGC-5 cells with EEEB reduced the reactive oxygen species and recovered the reduced glutathione level caused by various radical species such as H(2)O(2), OH·, or O(2)·(-). Moreover, EEEB inhibited lipid peroxidation on rat brain homogenates caused by sodium nitroprusside. Applying NMDA to the retina affected the thickness of the inner plexiform layer (IPL) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) produced a positive effect on ganglion cells. Importantly, EEEB protected the thinning of IPL and increased TUNEL positive cells in the ganglion cell layer (GCL). Five phlorotannin derivatives were isolated using chromatographic methods and liquid chromatography-mass spectroscopy analysis which has been known as an antioxidant. In conclusion, EEEB has a neuroprotective effect in vitro and in vivo. Furthermore, the major constituents of this extract, phlorotannins, could possibly be active compounds due to their antioxidative potency.  相似文献   

20.
The objective of this study was to study the effect of diabetic hyperglycemia on astrocytes after forebrain ischemia. Streptozotocin (STZ)-injected hyperglycemic and vehicle-injected normoglycemic rats were subjected to 15 minutes of forebrain ischemia. The brains were harvested in sham-operated controls and in animals with 1 and 6 h of recirculation following ischemia. Brain damage was accessed by haematoxylin and eosin (H&E) staining, cleaved caspase-3 immunohistochemistry and TdT-mediated-dUTP nick end labeling (TUNEL). Anti-GFAP antibody was employed to study astrocytes. The results showed that the 15-minute ischemia caused neuronal death after 1 and 6 h of reperfusion as revealed by increased numbers of karyopyknotic cells, edema, TUNEL-positive and active caspase-3-positive cells. Ischemia also activated astrocytes in the cingulated cortex as reflected by astrocyte stomata hypertrophy, elongated dendrites and increases in the number of dendrites, and immunoreactivity of GFAP. Diabetic hyperglycemia further enhanced neuronal death and suppressed ischemia-induced astrocyte activation. Further, diabetes-damaged astrocytes have increased withdrawal of the astrocyte end-foot from the cerebral blood vessel wall. It is concluded that diabetes-induced suppression and damages to astrocytes may contribute to its detrimental effects on recovery from cerebral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号