首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The interaction of 125I-asialoerythropoietin (asialoepo) with receptors has been characterized both by binding assay and affinity cross-linking. Purified spleen cells from mice infected with the anemia strain of Friend virus (FVA cells) have receptors for 125I-asialoepo with two classes of affinity constant: one with Kd = 0.02-0.03 nM and 300-400 per cell, the other with lower affinity (Kd = 0.9-1.2 nM) and 1,000-1,200 per cell. The Kd value for the high affinity site is one-third of that for the binding of native 125I-erythropoietin (125I-epo) to the same FVA cells (Kd = 0.08-0.1 nM). Using 125I-asialoepo or 125I-epo affinity cross-linking methods, we find two components with apparent molecular weights of 88 kDa and 105 kDa in FVA cells, and in the transformed mouse cell lines, 201, IW32, and NN10, in agreement with earlier studies using 125I-epo. These results indicate that 125I-asialoepo binds to the same receptors as 125I-epo, but with greater affinity for the high affinity site. Since 201 cells contain only a single class of lower affinity receptors for erythropoietin (epo), finding the same two components as found for FVA cells by cross-linking experiment indicates that the two components do not represent the two classes of receptor.  相似文献   

3.
We developed an efficient production system of the soluble extracellular domain of the human erythropoietin receptor (sEPO-R) and characterized the binding of erythropoietin (EPO) with the purified recombinant protein. The sEPO-R, fused to the maltose binding protein (MBP), was expressed as a soluble protein in the periplasm of Escherichia coli (E. coli) and did not accumulate in inclusion bodies. After lysis of the bacteria by an osmotic shock, the fusion protein was purified by affinity chromatography on amylose followed by size exclusion chromatography (SEC). Specific binding of 125I-labelled EPO to the sEPO-R was demonstrated by competitive and saturation binding assays. A single affinity class (Kd = 0.25 nM) of the binding site was evident by Scatchard analysis. This value is similar to the Kd observed between EPO and the EPO-R of high affinity present on human erythroid progenitors. The complex has a molecular size corresponding to a 1:1 complex of EPO and the fusion protein.  相似文献   

4.
A high throughput scintillation proximity assay (SPA) was developed to identify novel ligands of FKBP-12, an immunophilin with peptidyl prolyl isomerase (rotamase) activity. Recombinant histidine-tagged FKBP-12 was expressed in Escherichia coli, purified by metal ion affinity chromatography, and immobilized to SPA beads by an antibody that recognizes the histidine tag of the recombinant protein. Using 1 nM [3H] FK506, a well-known macrolid ligand of FKBP-12, specific binding was saturable and accounted for 95% of total binding. Analysis of saturation and homologous displacement isotherms indicated the existence of a single binding site with a Kd value of 1.6 nM. The specificity of [3H] FK506 binding was demonstrated in displacement experiments and showed that rapamycin, another macrolid, was as active as FK506 (IC50 of 3.5 and 3.2 nM, respectively), whereas GPI-1046, a prototype of small molecular compounds with neurotrophic properties and affinity for FKBP-type immunophilins, was more than 1000-fold less active. The high signal-to-noise ratio of 30, together with small standard deviations, makes this novel assay well suited for automated high throughput screening.  相似文献   

5.
Epitope tagging of expressed proteins is a versatile tool for the detection and purification of the proteins. This approach has been used in protein-protein interaction studies, protein localization, and immunoprecipitation. Among the most popular tag systems is the FLAG epitope tag, which is recognized by three monoclonal antibodies M1, M2, and M5. We describe novel approaches to the detection of epitope-tagged proteins via fluorescence resonance energy transfer on beads. We have synthesized and characterized biotinylated and fluorescein-labeled FLAG peptides and examined the binding of FLAG peptides to commercial streptavidin beads using flow cytometric analysis. A requirement of assay development is the elucidation of parameters that characterize the binding interactions between component systems. We have thus compiled a set of Kd values determined from a series of equilibrium binding experiments with beads, peptides, and antibodies. We have defined conditions for binding biotinylated and fluoresceinated FLAG peptides to beads. Site occupancies of the peptides were determined to be on the order of several million sites per bead and Kd values in the 0.3-2.0 nM range. The affinity for antibody attachment to peptides was determined to be in the low nanomolar range (less than 10 nM) for measurements on beads and solution. We demonstrate the applicability of this methodology to assay development, by detecting femtomole amounts of N-terminal FLAG-bacteria alkaline phosphatase fusion protein. These characterizations form the basis of generalizable and high throughput assays for proteins with known epitopes, for research, proteomic, or clinical applications.  相似文献   

6.
The human transferrin receptor (TfR) and its ligand, the serum iron carrier transferrin, serve as a model system for endocytic receptors. Although the complete structure of the receptor's ectodomain and a partial structure of the ligand have been published, conflicting results still exist about the magnitude of equilibrium binding constants, possibly due to different labeling techniques. In the present study, we determined the equilibrium binding constant of purified human TfR and transferrin. The results were compared to those obtained with either iodinated TfR or transferrin. Using an enzyme-linked assay for receptor-ligand interactions based on the published direct calibration ELISA technique, we determined an equilibrium constant of Kd=0.22 nM for the binding of unmodified human Tf to surface-immobilized human TfR. In a reciprocal experiment using soluble receptor and surface-bound transferrin, a similar constant of Kd=0.23 nM was measured. In contrast, covalent labeling of either TfR or transferrin with 125I reduced the affinity 3-5-fold to Kd=0.66 nM and Kd=1.01 nM, respectively. The decrease in affinity upon iodination of transferrin is contrasted by an only 1.9-fold decrease in the association rate constant, suggesting that the iodination affects rather the dissociation than the association kinetics. These results indicate that precautions should be taken when interpreting equilibrium and rate constants determined with covalently labeled components.  相似文献   

7.
High affinity binding of platelet-derived growth factor (PDGF) has been proposed to involve the interaction of the dimeric PDGF ligand with two receptor subunits, designated alpha and beta. We have cloned and expressed a human PDGF receptor cDNA which differs in sequence from the beta-subunit and which has the PDGF binding properties and monoclonal antibody recognition, predicted for the alpha-subunit. Scatchard analysis indicated that PDGF-AA and PDGF-AB bound to transfected alpha-subunits with affinities of Kd = 0.06 and 0.05 nM, respectively. PDGF-BB bound with a significantly lower affinity (Kd = 0.4 nM). Nevertheless, this affinity is still great enough to mediate substantial PDGF-BB binding at physiological concentrations and would be considered to be "high affinity." We have used wild-type and kinase-inactive human beta-subunits to show that PDGF binding promotes receptor subunit dimerization in intact cells. In addition, we found that PDGF stimulates tyrosine phosphorylation of the kinase-inactive beta-subunit when it is expressed with alpha-subunits. The kinase-inactive beta-subunits were phosphorylated at tyrosine 857 and 751, the major phosphorylation sites of the wild-type beta-subunit, indicating either that intra- and intermolecular phosphorylation occurs on the same sites, or that a significant fraction of receptor tyrosine phosphorylation is intermolecular.  相似文献   

8.
Thrombomodulin is an endothelial glycoprotein that serves as a cofactor for protein C activation. To examine the ligand specificity of human thrombomodulin, we performed equilibrium binding assays with human thrombin, thrombin S205A (wherein the active site serine is replaced by alanine), meizothrombin S205A, and human factor Xa. In competition binding assays with CV-1(18A) cells expressing cell surface recombinant human thrombomodulin, recombinant wild type thrombin and thrombin S205A inhibited 125I-diisopropyl fluorophosphate-thrombin binding with similar affinity (Kd = 6.4 +/- 0.5 and 5.3 +/- 0.3 nM, respectively). However, no binding inhibition was detected for meizothrombin S205A or human factor Xa (Kd greater than 500 nM). In direct binding assays, 125I-labeled plasma thrombin and thrombin S205A bound to thrombomodulin with Kd values of 4.0 +/- 1.9 and 6.9 +/- 1.2 nM, respectively. 125I-Labeled meizothrombin S205A and human factor Xa did not bind to thrombomodulin (Kd greater than 500 nM). We also compared the ability of thrombin and factor Xa to activate human recombinant protein C. The activation of recombinant protein C by thrombin was greatly enhanced in the presence of thrombomodulin, whereas no significant activation by factor Xa was detected with or without thrombomodulin. Similar results were obtained with thrombin and factor Xa when human umbilical vein endothelial cells were used as the source of thrombomodulin. These results suggest that human meizothrombin and factor Xa are unlikely to be important thrombomodulin-dependent protein C activators and that thrombin is the physiological ligand for human endothelial cell thrombomodulin.  相似文献   

9.
Erythropoietin (Epo) is a hematopoietic cytokine that is crucial for the differentiation and proliferation of erythroid progenitor cells. Epo acts on its target cells by inducing homodimerization of the erythropoietin receptor (EpoR), thereby triggering intracellular signaling cascades. The EpoR encompasses eight tyrosine motifs on its cytoplasmic tail that have been shown to recruit a number of regulatory proteins. Recently, the feedback inhibitor suppressor of cytokine signaling-3 (SOCS-3), also referred to as cytokine-inducible SH2-containing protein 3 (CIS-3), has been shown to act on Epo signaling by both binding to the EpoR and the EpoR-associated Janus kinase 2 (Jak2) [Sasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. & Yoshimura, A. (2000) J. Biol. Chem 275, 29338-29347]. In this study tyrosine 401 was identified as a binding site for SOCS-3 on the EpoR. Here we show that human SOCS-3 binds to pY401 with a Kd of 9.5 microm while another EpoR tyrosine motif, pY429pY431, can also interact with SOCS-3 but with a ninefold higher affinity than we found for the previously reported motif pY401. In addition, SOCS-3 binds the double phosphorylated motif pY429pY431 more potently than the respective singly phosphorylated tyrosines indicating a synergistic effect of these two tyrosine residues with respect to SOCS-3 binding. Surface plasmon resonance analysis, together with peptide precipitation assays and model structures of the SH2 domain of SOCS-3 complexed with EpoR peptides, provide evidence for pY429pY431 being a new high affinity binding site for SOCS-3 on the EpoR.  相似文献   

10.
We assessed the participation of the three known heparin-binding domains of PFn (Hep I, Hep II, Hep III) in their interaction with heparin by making a quantitative comparison of the fluid-phase heparin affinities of PFn and PFn fragments under physiologic pH and ionic strength conditions. Using a fluorescence polarization binding assay that employed a PFn affinity-purified fluorescein-labeled heparin preparation, we found that greater than 98% of the total PFn heparin-binding sites exhibit a Kd in the 118-217 nM range. We also identified a minor (less than 2%) class of binding sites exhibiting very high affinity (Kd approximately 1 nM) in PFn and the carboxyl-terminal 190/170 and 150/136 kDa PFn fragments. This latter activity probably reflects multivalent inter- or intramolecular heparin-binding activity. Amino-terminal PFn fragments containing Hep I (72 and 29 kDa) exhibited low affinity for heparin under physiologic buffer conditions (Kd approximately 30,000 mM). PFn fragments (190/170 and 150/136 kDa) containing both the carboxyl-terminal Hep II and central Hep III domains retained most of the heparin-binding activity of native PFn (Kd = 278-492 nM). The isolated Hep II domain (33-kDa fragment) exhibited appreciable, but somewhat lower (2-5-fold), heparin affinity compared to the 190/170-kDa PFn fragment. Heparin binding to the 100-kDa PFn fragment containing Hep III was barely detectable (Kd greater than 30,000 nM). From these observations, we conclude that PFn contains only one major functional heparin-binding site per subunit, Hep II, that dominates the interaction between heparin and PFn.  相似文献   

11.
A steroid binding capacity assay and a radioimmunoassay were both used to measure corticosteroid binding globulin (CBG) in serum samples from 22 patients with sepsis. An approximately 50% discordancy between the two values in one patient suggested the presence of a CBG variant with reduced affinity for cortisol, and this was confirmed by Scatchard analysis. We therefore used the polymerase chain reaction to amplify exons that encode for human CBG from the genomic DNA of this patient. This revealed two mutations within the coding sequences: one of which results in a Leu----His substitution at residue 93 and another which encodes a Ser----Ala substitution at residue 224 of the human CBG polypeptide. To assess the impact of each substitution on the steroid binding affinity of CBG, each mutation was introduced separately into a normal human CBG cDNA, and the normal and mutated cDNAs were expressed in Chinese hamster ovary cells. Scatchard analysis of the CBG produced in culture indicated that the His93 mutation (Kd = 2.24 +/- 1.75 nM) reduced the cortisol binding affinity of CBG (mean +/- SD) significantly (P less than 0.024) when compared to normal CBG (Kd = 0.64 +/- 0.31 nM), while the Ala224 mutation (Kd = 0.63 +/- 0.33 nM) did not influence cortisol binding affinity. We therefore conclude that residue 93 may play an important role in determining the structure of the CBG steroid binding site.  相似文献   

12.
A recombinant soluble form (sEPO-R) of erythropoietin (EPO) receptor (EPO-R) was produced by Chinese hamster ovary cells and isolated in high yield with the EPO-fixed gel. Ligand binding assays were done using three methods; precipitation of sEPO-R radiolabeled EPO complex and competition of sEPO-R for the binding of radiolabeled EPO with the cellular EPO-R. The results showed a Kd of 17 nM which was much lower than those for cellular EPO-R. One N-glycosylation site exists in sEPO-R but the glycosylation did not affect the binding affinity to EPO. A complex with a molecular size that corresponded to a 1:1 complex of EPO and sEPO-R was detected.  相似文献   

13.
Interaction of thrombospondin with resting and stimulated human platelets   总被引:12,自引:0,他引:12  
The interaction of isolated and radioiodinated thrombospondin with washed human platelets has been characterized. The ligand bound to nonstimulated and thrombin-stimulated platelets in a time-dependent manner, and apparent steady state was reached within 25 min. Binding was not due to iodination of the ligand and was inhibited by nonlabeled thrombospondin but not by unrelated proteins, and bound ligand was identical with thrombospondin in terms of subunit structure. Nonlinear curve-fitting analyses of binding to resting platelets suggested the presence of a single class of sites which bound 3,100 +/- 1,000 molecules/platelet with an apparent Kd of 50 +/- 20 nM. This interaction was not attributable to contaminating cells or inadvertant platelet activation. Binding to thrombin-stimulated platelets had a lower apparent affinity (Kd = 250 +/- 100 nM) and higher apparent capacity (35,600 +/- 9,600 molecules/platelet). Thrombin-enhanced binding was dependent upon agonist dose and platelet stimulation. Fibrinogen, a monoclonal antibody to GPIIb-IIIa, temperature, and divalent ions had differential effects upon thrombospondin binding to resting and stimulated platelets, suggesting the presence of two distinct mechanisms of thrombospondin binding to platelets. While thrombospondin binding to thrombin-stimulated platelets occurs with characteristics similar to those observed for fibrinogen, fibronectin, and von Willebrand Factor, its high affinity interaction with resting platelets is unique to this adhesive glycoprotein.  相似文献   

14.
Fibulin is a recently described extracellular matrix (ECM) and plasma glycoprotein (Argraves, W. S., Tran, H., Burgess, W. H., and Dickerson, K. (1990) J. Cell Biol. 111, 3155-3164). In this report, ligand affinity chromatography and solid-phase binding analyses were performed to determine which ECM protein(s) interact with fibulin. Fibulin-Sepharose bound two polypeptides of 240 and 100 kDa from the culture medium of metabolically radiolabeled fibroblasts. These two proteins were identified as fibronectin (FN) and fibulin, respectively, based on their electrophoretic behavior and reactivity with monoclonal antibodies. Consistent with the findings of affinity chromatography, fibulin bound to surfaces coated with FN (either plasma or cellular form) or fibulin but not with other ECM proteins, such as laminin, merosin, and types I and IV collagen. The binding of fibulin to solid-phase FN was estimated to have a Kd of 139 nM, whereas the Kd for self-interaction was 322 nM. Evaluation of proteolytic fragments from all regions of FN allowed a fibulin-binding site to be localized within a 23-kDa heparin-binding fragment containing type III repeats 13-14. Heparin did not compete for the interaction between fibulin and FN, suggesting that the binding sites for fibulin and heparin are distinct.  相似文献   

15.
We investigated the abilities of VIP and secretin to occupy receptors and to increase cellular cyclic AMP using dispersed acini from guinea pig pancreas. The dose-inhibition curve for inhibition of binding of 125I-VIP by VIP was broad with detectable inhibition at 0.1 nM VIP, half-maximal inhibition at 2 nM VIP and complete inhibition at 10 microM VIP. Secretin also inhibited binding of 125I-VIP was compatible with two VIP-preferring receptors with one class having a high affinity for VIP (Kd 1.1 nM) and a low affinity for secretin (Kd 5 microM) and the other class having an intermediate affinity for VIP (Kd 470 nM). The dose inhibition curve for inhibition of binding of 125I-secretin by secretin was not broad. Half-maximal inhibition occurred with 7 nM secretin or with 10 microM VIP. Computer analysis was compatible with a single secretin-preferring receptor with a high affinity for secretin (Kd 7 nM) and a low affinity for VIP (Kd 5.9 microM). Comparison of the ability of VIP to increase cyclic AMP with or without the secretin-receptor antagonist, secretin-5-27, demonstrated only occupation of the high affinity VIP-preferring or high affinity secretin-preferring receptors increase cyclic AMP. Our results demonstrate that, in contrast to previous reports, guinea pig pancreatic acini possess 3 classes of receptors that interact with VIP and secretin. The low affinity receptor seen with 125I-VIP is not the same as the secretin-preferring receptor and does not increase cellular cyclic AMP.  相似文献   

16.
Binding sites were solubilized from human placental membrane using 1.5% sodium cholate and were assayed using polyethylene glycol precipitation. These soluble binding sites had properties of an adenosine A1 binding site. 2-[3H]Chloroadenosine and N-[3H]-ethylcarboxamidoadenosine (NECA) binding were time dependent and reversible. Scatchard plots indicate two classes of binding sites with Kd values of 6 and 357 nM for 2-chloro[8-3H]adenosine and 0.1 and 26 nM with [3H]NECA. The specificity of [3H]NECA binding was assessed by the ability of adenosine analogs to complete for binding sites. Using this approach the estimated IC50 values were 60 nM for (R-PIA), 160 nM for S-PIA, 80 nM for NECA, and 20 nM for 2-chloroadenosine. Binding of [3H]NECA to the soluble sites is inhibited to 48% of the control value by 100 microM guanylyl-5'-imidodiphosphate (Gpp(NH)p). The IC50 value for NECA binding to the soluble binding site was increased from 80 nM to 1500 by Gpp(NH)p. There was a shift of binding affinity from a mixture of high and low affinity to only low affinity with 100 microM Gpp(NH)p. Despite these alterations a NECA prelabeled molecular species of 150 kDa did not decrease in molecular weight upon the addition of 100 microM Gpp(NH)p during high-performance liquid chromatography on a Superose 12 column. Other evidence to support the concept of preferential solubilization and assay of a small population of A1 binding sites was obtained. Following solubilization adenosine A2-like binding sites could be detected only in reconstituted vesicles. The existence of small amounts of A1 binding sites in intact human placental membranes was directly demonstrated using the A1 agonist ligand N6-[3H]cyclohexyladenosine and the A1 antagonist ligand 8-[3H]cyclopentyl-1,3-dipropylxanthine. JAR choriocarcinoma cells have "A2-like" membrane binding sites. In contrast to placental membranes, only A2-like binding sites could be solubilized from JAR choriocarcinoma cells. These observations indicate that human placental membranes contain adenosine A1 binding sites in addition to A2-like binding sites. These sites are guanine nucleotide sensitive, but do not shift to a lower molecular weight form upon assumption of a low affinity state.  相似文献   

17.
M Zucker  A Weizman  M Rehavi 《Life sciences》2001,69(19):2311-2317
The present study indicates that human platelets can be used as an accessible peripheral model not only for the plasma membrane serotonin transporter, but also for the vesicular monoamine transporter. The vesicular monoamine transporter (VMAT2) is responsible for the accumulation of monoamines in the synaptic vesicles. VMAT2 differs from the plasma membrane transporters in its capability to recognize serotonin, histamine, norepinephrine and dopamine with almost the same affinity. Dihydrotetrabenazine (TBZOH) is a very potent inhibitor of VMAT2 that binds with high affinity to this transporter. [3H]TBZOH has been used as a ligand to label VMAT2 in human, bovine and rodent brain. In this study we characterized the pharmacodynamic and pharmacokinetic parameters of [3H]TBZOH binding in human platelets as compared to rat brain. The density (Bmax) and affinity (Kd) of [3H]TBZOH specific binding was assessed by Scatchard analysis. Association and dissociation rate constants (k(on), K(off)) were assessed by kinetic binding studies. In this study high-affinity and saturable binding sites for [3H]TBZOH were demonstrated in human platelets. Both the affinity of [3H]TBZOH to its binding site in platelets (Kd = 3.2+/-0.5 nM) and the kinetic rate constants (K(on) = 2.8 x 10(7) M(-1) min(-1); K(off) = 0.099 min(-1)) were similar to that in rat brain (Kd(striatum) = 1.5 nM; Kd(cerebral cortex) = 1.35 nM; K(on) = 2 x 10(7) M(-1) min(-1); K(off) = 0.069 min(-1)). Only the VMAT2 blockers tetrabenazine and reserpine inhibited [3H]TBZOH specific binding.  相似文献   

18.
The hematopoietic cytokine erythropoietin (Epo) exerts cytoprotective effects on several types of neuronal cells both in vivo and in culture. Detailed molecular mechanisms underlying this phenomenon have not been elucidated and even the identity of the cytoprotective Epo receptors in neuronal cells is controversial. Here we show that Epo prevents staurosporine-induced apoptosis of differentiated human neuroblastoma SH-SY5Y cells, and activates the STAT5, AKT and MAPK signaling pathways. Differentiated SH-SY5Y cells have fewer than 50 high affinity Epo surface binding sites per cell, which could not be detected by standard assays measuring binding of 125I-labeled Epo. However, by measuring endocytosis of 125I-Epo, we could reliably quantify very small numbers of high-affinity Epo surface binding sites. Using SH-SY5Y cells stably expressing an Epo receptor (EpoR) shRNA and thus lacking detectable EpoR expression, we show that high affinity binding of Epo to these neuronal cells is mediated by the hematopoietic EpoR, and that this EpoR is also essential for the antiapoptotic activity of Epo. In contrast, a mutant Epo that has an intact binding site 1 but a non-functional binding site 2 and hence binds only to one cell surface EpoR molecule ("site 2" Epo mutant) displays significantly lower antiapoptotic activity than wild-type Epo. Furthermore, expression of the GM-CSF/IL-3/IL-5 receptor common beta chain, which was proposed to be responsible for the cytoprotective activity of Epo on certain types of neuronal cells, was undetectable in differentiated SH-SY5Y cells. Epo also alleviated staurosporine-induced apoptosis of rat PC-12 pheochromocytoma cells while the R103A "site 2" Epo mutant did not, and we could not detect expression of the common beta chain in PC-12 cells. Together our results indicate that Epo exerts its antiapoptotic effects on differentiated SH-SY5Y and PC-12 cells through the standard stoichiometry of one molecule of Epo binding to two EpoR subunits, comprising the "classical" Epo receptor signaling complex.  相似文献   

19.
Existing techniques for androgen receptor (AR) assay are complicated by cross-reactivity of ligand binding affinities that can lead to incorrect estimation of receptor concentration. Two most frequently used ligands are [3H]dihydrotestosterone [( 3H]DHT) and [3H]methyltrienolone [( 3H]R1881), which in addition to binding to AR also bind to sex hormone binding globulin (SHBG; Kd = 1.5 nM) and progesterone receptors (PgR; Human Kd = 1 nM, rat Kd = 6 nM) respectively. Triamcinolone acetonide (TMA) is commonly used to block binding of [3H]R1881 to PgR, however at high concentrations TMA itself will bind AR (Kd = 7 microM). We have developed a hybrid ligand method for the measurement of AR in the presence of SHBG and PgR. This method used [3H]R1881 as the high specific activity labelled tracer and DHT as the unlabelled competitor of specific AR binding. Using this assay, 20% of human colorectal carcinomas were found to contain AR.  相似文献   

20.
We show that Janus kinase 2 (JAK2), and more specifically just its intact N-terminal domain, binds to the erythropoietin receptor (EpoR) in the endoplasmic reticulum and promotes its cell surface expression. This interaction is specific as JAK1 has no effect. Residues 32 to 58 of the JAK2 JH7 domain are required for EpoR surface expression. Alanine scanning mutagenesis of the EpoR membrane proximal region reveals two modes of EpoR-JAK2 interaction. A continuous block of EpoR residues is required for functional, ligand-independent binding to JAK2 and cell surface receptor expression, whereas four specific residues are essential in switching on prebound JAK2 after ligand binding. Thus, in addition to its kinase activity required for cytokine receptor signaling, JAK is also an essential subunit required for surface expression of cytokine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号