首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of natural soil suppressiveness to soilborne diseases   总被引:1,自引:0,他引:1  
Suppressive soils are characterized by a very low level of disease development even though a virulent pathogen and susceptible host are present. Biotic and abiotic elements of the soil environment contribute to suppressiveness, however most defined systems have identified biological elements as primary factors in disease suppression. Many soils possess similarities with regard to microorganisms involved in disease suppression, while other attributes are unique to specific pathogen-suppressive soil systems. The organisms operative in pathogen suppression do so via diverse mechanisms including competition for nutrients, antibiosis and induction of host resistance. Non-pathogenic Fusarium spp. and fluorescent Pseudomonas spp. play a critical role in naturally occurring soils that are suppressive to Fusarium wilt. Suppression of take-all of wheat, caused by Gaeumannomyces graminis var. tritici, is induced in soil after continuous wheat monoculture and is attributed, in part, to selection of fluorescent pseudomonads with capacity to produce the antibiotic 2,4-diacetylphloroglucinol. Cultivation of orchard soils with specific wheat varieties induces suppressiveness to Rhizoctonia root rot of apple caused by Rhizoctonia solani AG 5. Wheat cultivars that stimulate disease suppression enhance populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward this pathogen. Methods that transform resident microbial communities in a manner which induces natural soil suppressiveness have potential as components of environmentally sustainable systems for management of soilborne plant pathogens. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
In a field cropped with wheat, a high and low level of soil conduciveness to take-all were induced by applying a nitrogen fertilizer with either calcium nitrate or ammonium sulphate. From these two soils, two representative populations of fluorescent pseudomonads were tested for their in situ behaviour. Take-all index and root dry weight were assessed on plants cropped in soils infested with Gaeumannomyces graminis var tritici (Ggt) and each bacterized with one of the isolates of fluorescent pseudomonads. The bacteria tested can be split into three groups: antagonists which reduce take-all, deleterious isolates which aggravate the disease and neutral without evident effect on the disease. The predominance of antagonistic fluorescent pseudomonads in the NH4-treated soil and the predominance of deleterious ones in the NO3-treated soil was confirmed after statistical analysis. The microbial impact on take-all must be more considered as the resulting effect of divergent activities of both rhizobacteria types than the only consequences of the presence of antagonistic pseudomonads. All the high cyanogenic pseudomonads were antagonists in situ and were more numerous in the NH4-treated soil than in the NO3-treated soil.  相似文献   

3.
Soils collected from five districts of Hawaii county were infested with Rhtzoctonia solani in small inoculum particles and successfully planted with radish to induce suppression, Suppressiveness was induced in some, but not all, replicates of all. soils. When fresh inoculum was added, suppressiveness was demonstrated in some, but not all, replicates of two soils, but not in the other three soils. Acidity of soil was not important in successful induction of suppression. Characteristics of induced suppression in soil from one site (S. Kohala) were further investigated. Reduction of microbial population by heat treatment of suppressive soil completely nullified its inhibitory effect. The populations of actinomycetes, fungi in general and Trichoderma spp. in suppressive and conducive soil were not significantly different. However, the population of bacteria in suppressive soil was almost four times higher than that in conducive soil. The survival time of R. solani in suppressive soil was shorter than that in conducive soil. Hyphae of R. solani also lysed faster in suppressive soil than in conducive soil. It is suggested that suppressiveness of the South Kohala soil created by monoculture is due to enhanced competitive pressure generated by an increased bacterial population, which in turn causes the rapid autolysis of R. solani hyphae.  相似文献   

4.
Take-all of wheat, caused by Gaeumannomyces graminis var tritici (Ggt), is reduced by ammoniacal fertilizers as compared to nitrate sources. This influence of nitrogen on the disease is only observed on nodal roots at flowering. But soil conduciveness to take-all, as measured in a soil bioassay, is modified earlier. Forty days after nitrogen application at early tillering, the NH4-treated soil became less conducive than the NO3-treated one. When nitrogen applications are done at sowing and at tillering, differences in disease propagation between the two soils are enhanced. Results from four years of experimentation show that when the level of natural soil inoculum is high, disease severity is reduced by ammonium, showing an effect on the parasitic phase of Ggt. At a low level of natural inoculum the effect of the source of nitrogen is mainly observed on the percent of infected plants, indicating that the saprophytic and preparasitic phases are affected. Rhizospheric bacterial populations increase from sowing to tillering, but differences on take-all conduciveness after tillering are not correlated with differences in the amounts of aerobic bacteria or fluorescent pseudomonads isolated from soils treated with different sources of nitrogen. Qualitative changes in fluorescent Pseudomonas spp. populations, like in vitro antagonism, are more likely to explain differences in soil conduciveness to take-all than are quantitative changes in this group. Nevertheless, the introduction of Ggt in a cropped soil leads to a greater increase in fluorescent pseudomonads populations than in total aerobic bacteria.The delay between reducing soil conduciveness and reducing disease in the field with ammonium nitrogen fertilization, the qualitative change of fluorescent pseudomonads populations and the role of necroses in rhizobacteria multiplication, provide information leading to our representation of a dynamic model based on the differentiation of the wheat root system into seminal and nodal roots.  相似文献   

5.
Summary In glasshouse experiments,Microdochium bolleyi (Mb) significantly reduced infection of wheat roots by the take-all fungus,Gaeumannomyces graminis vartritici (Ggt), when inocula were dispersed in soil at ratios of 10∶1 (Mb:Ggt) or more. Spread of take-all lesions up roots from a layer of inoculum also was reduced when Mb was inoculated immediately below the crown. In contrast,Periconia macrospinosa did not control take-all even at an inoculum ratio of 100∶1. M. bolleyi interfered with growth on roots byPhialophora graminicola, a known biocontrol agent of take-all. It is suggested that this phenomenon and control of take-all by these fungi occur by competition for cortical cells that senesce in the normal course of root development.  相似文献   

6.
There have been no studies of the effect of take-all on leaf gas-exchange rates, despite the fact that take-all severely restricts plant water and nutrient uptake, which results in significant biomass and grain yield reduction. Here we describe the effect of inoculation with Gaeumannomyces graminis (Sacc.) var. tritici (Ggt) on carbon assimilation rate (A) and biomass production of wheat plants grown under two water regimes. We show that the impact of Ggt inoculation on plant growth and leaf A may be through reduced photosynthetic capacity of the leaves and not water stress per se. The nature of this reduced photosynthetic capacity remains uncertain but may involve nutrient deficiency and different enzymes produced by the fungus. In each of the 3 years the experiment was conducted, Ggt significantly reduced A, i.e. at anthesis by 18% in 2000, 15% in 2001, and 12% in 2002. In agreement with other field studies, Ggt reduced tiller number and production of all plant components, mostly root dry mass and grain mass per plant. Highly significant negative correlations were found between disease rating and A in all years, showing that at disease ratings equal or higher than 3 (on a scale from 1 to 4) A could practically be zero. While A decreased, intercellular CO2 concentration increased or did not change, and stomatal conductance was relatively high. In addition, A was more reduced under high than under low soil moisture content. These results support the idea that water stress per se did not contribute to the observed reduction of A. The mechanism of photosynthetic capacity reduction due to the Ggt root-rotting fungus is of interest as it may lead to the molecular mechanisms of plant resistance and ultimately to the development of take-all resistant plants.  相似文献   

7.
Take-all is a world-wide root-rotting disease of cereals. The causal organism of take-all of wheat is the soil-borne fungus Gaeumannomyces graminis var tritici (Ggt). No resistance to take-all, worthy of inclusion in a plant breeding programme, has been discovered in wheat but the severity of take-all is increased in host plants whose tissues are deficient for manganese (Mn). Take-all of wheat will be decreased by all techniques which lift Mn concentrations in shoots and roots of Mn-deficient hosts to adequate levels. Wheat seedlings were grown in a Mn-deficient calcareous sand in small pots and inoculated with four field isolates of Ggt. Infection by three virulent isolates was increased under conditions which were Mn deficient for the wheat host but infection by a weakly virulent isolate, already low, was further decreased. Only the three virulent isolates caused visible oxidation of Mn in vitro. The sensitivity of Ggt isolates to manganous ions in vitro did not explain the extent of infection they caused on wheat hosts. In a similar experiment four Australian wheat genotypes were grown in the same Mn-deficient calcareous sand and inoculated with one virulent isolate of Ggt. Two genotypes were inefficient at taking up manganese and were very susceptible to take-all, one was very efficient at taking up manganese and was resistant to take-all, and the fourth genotype was intermediate for both characters. All genotypes were equally resistant under Mn-adequate conditions.  相似文献   

8.
Two pot experiments using naturally infested soil and a range of watering regimes were conducted to study the possible effect of level and frequency of wetting of hot soil (to simulate the period between growing seasons in Western Australia) on inoculum of the take-all fungus (Gaeumannomyces graminis var.tritici). In combination with the high soil temperatures, all watering regimes reduced infectivity and propagule number of the take-all fungus, this reduction being absent in dry soils.  相似文献   

9.
Trichoderma hamatum, T. harzianum andT. koningii were isolated from wheat and rye-grass roots from a field in Western Australia. Frequency of occurrence ofTrichoderma spp. was higher on roots subjected to washing only, for both wheat and rye-grass than the roots which were surface-sterilized with 0.6% or 1.25% NaOCl.Trichoderma spp. were recovered at a higher frequency on PDA amended with lactic acid (pH 4.5) than on PDA alone (pH 5.6) or PDA with streptomycin. In general,Trichoderma spp. were isolated at a higher frequency from roots of wheat than that of rye-grass.T. hamatum occurred at a higher frequency in rye-grass roots than in wheat, whereasT. harzianum was more common in roots of wheat than in rye-grass, especially in seedling and milky ripe stages.T. koningii was recovered at a higher frequency from roots at seedling stage of rye-grass than wheat, the reverse being true at tillering stage.T. koningii was not recovered from roots of either host in any sampling when they were surface sterilized with 1.25% NaOCl.The take-all fungus was isolated from wheat and rye-grass roots more frequently at tillering and stem extension stages than others. It was severely pathogenic to both hosts in sterilized and non-sterilized soil.Addition of lactic acid, HCl or streptomycin to PDA did not affect the growth of theTrichoderma spp. tested, but the growth was slower on Martin's medium than on other media. In generalT. harzianum andT. koningii grow faster thanT. hamatum. The growth of the three species were not different at 20 and 25°C, but at 15°c growing of all species was significantly reduced.Incorporation of lactic acid into PDA prevented the bacterial growth in all treatments. Streptomycin too reduced but to a lesser degree than lactic acid. Surface sterilization with NaOCl decreased the recovery of both bacteria and fungi. T. hamatum andT. koningii reduced the mortality of wheat and rye-grass plants inoculated with the take-all fungus in sterilized and non-sterilized soil, whereT. harzianum did not protect wheat or rye-grass from infection by the take-all fungus.  相似文献   

10.
The effects of three soil temperatures on growth of spring barleys (Hordeum vulgare L.) and on their root colonization by vesicular arbuscular mycorrhizal (VAM) fungi from agricultural soils in Montana (USA) or Syria at different inoculum concentrations were tested in soil incubators in the greenhouse. The number of mycorrhizal plants as well as the proportion and intensity of roots colonized increased with higher soil temperatures. VAM fungi from Montana, primarily Glomus macrocarpum, were cold tolerant at 11°C while those from Syria, primarily G. hoi, were heat tolerant at 26°C. Inoculum potential of Montana VAM fungi was higher than Syrian VAM fungi in cool soils. Harmal, selected from Syrian barley land races, had the highest colonization by mycorrhizal fungi of the cultivars tested.Journal Series Paper: J-2532 Montana Agricultural Experiment Station.  相似文献   

11.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

12.
Endophytic actinobacteria isolated from healthy cereal plants were assessed for their ability to control fungal root pathogens of cereal crops both in vitro and in planta. Thirty eight strains belonging to the genera Streptomyces, Microbispora, Micromonospora, and Nocardioidies were assayed for their ability to produce antifungal compounds in vitro against Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease in wheat, Rhizoctonia solani and Pythium spp. Spores of these strains were applied as coatings to wheat seed, with five replicates (25 plants), and assayed for the control of take-all disease in planta in steamed soil. The biocontrol activity of the 17 most active actinobacterial strains was tested further in a field soil naturally infested with take-all and Rhizoctonia. Sixty-four percent of this group of microorganisms exhibited antifungal activity in vitro, which is not unexpected as actinobacteria are recognized as prolific producers of bioactive secondary metabolites. Seventeen of the actinobacteria displayed statistically significant activity in planta against Ggt in the steamed soil bioassay. The active endophytes included a number of Streptomyces, as well as Microbispora and Nocardioides spp. and were also able to control the development of disease symptoms in treated plants exposed to Ggt and Rhizoctonia in the field soil. The results of this study indicate that endophytic actinobacteria may provide an advantage as biological control agents for use in the field, where others have failed, due to their ability to colonize the internal tissues of the host plant.  相似文献   

13.
Herdina  Roget  D. K. 《Plant and Soil》2000,227(1-2):87-98
A rapid, routine DNA-based assay to quantify Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease of cereals, has been developed and used for the prediction of take-all in a wide range of field soils. Based on the correlation of the DNA-based assay and a soil bioassay, the risk of disease development can be estimated. Ggt DNA levels of <30 pg, 30–50 pg and >50 pg in 0.1 g soil organic matter correspond to low, moderate and high levels of the disease, respectively. Limitations in the prediction of take-all, including sampling requirements to obtain representative soil samples from fields and increasing the sensitivity and the accuracy of the DNA assay, are described. The main advantage in using the DNA-based assay, in estimating the amount of Ggt inoculum in soil, is that the levels of Ggt in soil samples can be assessed rapidly and accurately. Farmers can now have soil samples assessed before sowing. The DNA result can be used to predict the potential yield loss and determine the most appropriate management options using decision support software that is currently available. This DNA technology is currently being used commercially to detect and predict take-all. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Fusarium wilt is an economically important disease in carnation and tomato plants. The use of suppressive plant growth media has become an alternative method for plant disease control due to the lack of effective chemical control measures. Plant disease suppressiveness is sustained only in plant growth media with an adequate organic matter (OM) composition. Carbohydrate polymers are the most important sources of carbon nutrient for microbial community in these media, mainly consisting of cellulose and hemicellulose. This determines microbial activity, biomass and selects microbial communities in plant growth media, which are reported factors associated with Fusarium wilt suppressiveness.This work determined OM carbon functional groups using Single Pulse Magic Angle Spinning 13C-Nuclear Magnetic Resonance (SP-MAS 13C-NMR) in three plant growth media with different suppressiveness levels to Fusarium wilt in two crops, carnation and tomato. We propose that the critical role of OM to sustain naturally occurring suppressiveness in those media is not related with cellulose reserve. This could be explained because cellulose protected by lignin encrustation is not available to microbial degradation, meaning that cellulose availability is critical to sustenance of microorganism-mediated biological control. However, the hemicellulose relative abundance (peak 175 ppm) was associated to Fusarium wilt suppression level in plant growth media studied.Carbon source availability in OM was related to microbial biomass and econutritional group population densities involved in biocontrol. For these composts, Bacillus spp., oligotrophic and cellulolytic actinomycetes, and oligotrophic actinomycetes/oligotrophic bacteria and cellulolytic actinomycetes/cellulolytic bacteria ratios were indicated as microbial populations potentially involved in suppression.  相似文献   

15.
Pseudomonas strain AN5 (Ps. str. AN5), a non-fluorescent Australian bacterial isolate, is an effective biological control (biocontrol) agent of the take-all disease of wheat caused by the fungus Gaeumannomyces graminis var. tritici (Ggt). Ps. str. AN5 controls Ggt by producing an antifungal compound which was purified by thin layer and column chromatography, and identified by NMR and mass spectroscopic analysis to be d-gluconic acid. Commercially bought pure gluconic acid strongly inhibited Ggt. Two different transposon mutants of Ps. str. AN5 which had lost take-all biocontrol did not produce d-gluconic acid. Gluconic acid production was restored, along with take-all biocontrol, when one of these transposon mutants was complemented with the corresponding open reading frame from wild-type genomic DNA. Gluconic acid was detected in the rhizosphere of wheat roots treated with the wild-type Ps. str. AN5, but not in untreated wheat or wheat treated with a transposon mutant strain which had lost biocontrol. The antifungal compounds phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol, produced by other Pseudomonads and previously shown to be effective in suppressing the take-all disease, were not detected in Ps. str. AN5 extracts. These results suggest that d-gluconic acid is the most significant antifungal agent produced by Ps. str. AN5 in biocontrol of take-all on wheat roots.  相似文献   

16.
Mavrodi  D. V.  Kovalenko  N. P.  Sokolov  S. L.  Parfenyuk  V. G.  Kosheleva  I. A.  Boronin  A. M. 《Microbiology》2003,72(5):597-604
The key genesnahAc and xylEof the naphthalene catabolism of fluorescent Pseudomonas spp. in total soil DNA samples were detected by the polymerase chain reaction (PCR) technique. The collection of fluorescent Pseudomonas spp. was screened for the occurrence of these genes. The results obtained show the possibility of using this approach in the goal-directed search for plasmid-containing naphthalene-degrading fluorescent pseudomonads in soil. The distribution of the naphthalene catabolism genes in soils contaminated with creosote and petroleum products was also studied.  相似文献   

17.
The biological activities of a sterile red fungus (SRF) capable of plant growth promotion and suppression of take-all disease were investigated in soils collected from Lancelin, Newdegate and Mt. Barker regions of Western Australia. Further, the effects of three wheat cultivars and the presence of two isolates ofStreptomyces on the biological activities of the SRF were tested using the Lancelin soil. The biological activities of the SRF were greatest in the Lancelin and Newdegate (wheat field) soils and with the wheat cultivar Gutha. In in vitro studies the soil streptomycetes tested showed either a significant increase in the exudate production by the SRF, which had antifungal and growth promoting properties, or an inhibition of growth of the fungus. Streptomycete A63 which stimulated the exudate production by the SRF in vitro, however, did not enhance disease protection in vivo. On the other hand, protection from root rot by the SRF in vivo was reduced in the presence of the streptomycete isolate Ax which is capable of inhibiting the growth of the SRF in vitro.  相似文献   

18.
The relationship between micronutrient efficiency of four wheat (Triticum aestivum L.) genotypes, tolerance to take-all disease (caused by Gaeumannomyces graminis (Sacc.) Arx and Olivier var. tritici Walker), and bacterial populations in the rhizosphere was tested in soil fertilized differentially with Zn and Mn. Plant growth was reduced by Mn or Zn deficiency and also by take-all. There was an inverse relationship between micronutrient efficiency of wheat genotypes when grown in deficient soils and the length of take-all lesions on roots (efficient genotypes had shorter lesions than inefficient ones). In comparison to the rhizosphere of control plants of genotypes Aroona and C8MM receiving sufficient Mn and Zn, the total numbers of bacterial cfu (colony forming units) were greater in the rhizosphere of Zn-efficient genotype Aroona under Zn deficiency and in Mn-efficient genotype C8MM under Mn deficiency. These effects were not observed in other genotypes. Take-all decreased the number of bacterial cfu in the rhizosphere of fully-fertilized plants but not of those subjected to either Mn or Zn deficiency. In contrast, the Zn deficiency treatment acted synergistically with take-all to increase the number of fluorescent pseudomonads in the rhizosphere. Although numbers of Mn-oxidising and Mn-reducing bacteria were generally low, take-all disease increased the number of Mn reducers in the rhizosphere of Mn-efficient genotypes Aroona and C8MM. Under Mn-deficiency conditions, the number of Mn reducers in the rhizosphere increased in Aroona but not in C8MM wheat. The results suggest that bacterial microflora may play a role in the expression of Mn and Zn efficiency and tolerance to take-all in some wheat genotypes.  相似文献   

19.
The genotypic diversity that occurs in natural populations of antagonistic microorganisms provides an enormous resource for improving biological control of plant diseases. In this study, we determined the diversity of indigenous 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. occurring on roots of wheat grown in a soil naturally suppressive to take-all disease of wheat. Among 101 isolates, 16 different groups were identified by random amplified polymorphic DNA (RAPD) analysis. One RAPD group made up 50% of the total population of DAPG-producing Pseudomonas spp. Both short- and long-term studies indicated that this dominant genotype, exemplified by P. fluorescens Q8r1-96, is highly adapted to the wheat rhizosphere. Q8r1-96 requires a much lower dose (only 10 to 100 CFU seed−1 or soil−1) to establish high rhizosphere population densities (107 CFU g of root−1) than Q2-87 and 1M1-96, two genotypically different, DAPG-producing P. fluorescens strains. Q8r1-96 maintained a rhizosphere population density of approximately 105 CFU g of root−1 after eight successive growth cycles of wheat in three different, raw virgin soils, whereas populations of Q2-87 and 1M1-96 dropped relatively quickly after five cycles and were not detectable after seven cycles. In short-term studies, strains Q8r1-96, Q2-87, and 1M1-96 did not differ in their ability to suppress take-all. After eight successive growth cycles, however, Q8r1-96 still provided control of take-all to the same level as obtained in the take-all suppressive soil, whereas Q2-87 and 1M1-96 gave no control anymore. Biochemical analyses indicated that the superior rhizosphere competence of Q8r1-96 is not related to in situ DAPG production levels. We postulate that certain rhizobacterial genotypes have evolved a preference for colonization of specific crops. By exploiting diversity of antagonistic rhizobacteria that share a common trait, biological control can be improved significantly.  相似文献   

20.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号