首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a novel microfabricated device to simultaneously and actively trap thousands of single mammalian cells in alignment with a planar microelectrode array. Thousands of 3 micromdiameter trapping electrodes were fabricated within the bottom of a parallel-plate flow chamber. Cells were trapped on the electrodes and held against destabilizing fluid flows by dielectrophoretic forces generated in the device. In general, each electrode trapped only one cell. Adhesive regions were patterned onto the surface in alignment with the traps such that cells adhered to the array surface and remained in alignment with the electrodes. By driving the device with different voltages, we showed that trapped cells could be killed by stronger electric fields. However, with weaker fields, cells were not damaged during trapping, as indicated by the similar morphologies and proliferation rates of trapped cells versus controls. As a test of the device, we patterned approximately 20000 cells onto a 1cm(2) grid of rectangular adhesive regions, with two electrodes and thus two cells per rectangle. Our method obtained 70+/-1% fidelity versus 17+/-1% when using an existing cell-registration technique. By allowing the placement of desired numbers of cells at specified locations, this approach addresses many needs to manipulate and register cells to the surfaces of biosensors and other devices with high precision and fidelity.  相似文献   

2.
We present a novel microfabricated device to simultaneously and actively trap thousands of single mammalian cells in alignment with a planar microelectrode array. Thousands of 3 Ipm diameter trapping electrodes were fabricated within the bottom of a parallel-plate flow chamber. Cells were trapped on the electrodes and held against destabilizing fluid flows by dielectrophoretic forces generated in the device.In general, each electrode trapped only one cell. Adhesive regions were patterned onto the surface in alignment with the traps such that cells adhered to the array surface and remained in alignment with the electrodes. By driving the device with different voltages, we showed that trapped cells could be killed by stronger electric fields. However, with weaker fields, cells were not damaged during trapping, as indicated by the similar morphologies and proliferation rates of trapped cells versus controls. As a test of the device, we patterned approximately 20,000 cells onto aI cm2 grid of rectangular adhesive regions, with two electrodes and thus two cells per rectangle. Our method obtained 70 +/- 1% fidelity versus 17 +/- 1% when using an existing cell-registration technique. By allowing the placement of desired numbers of cells at specified locations, this approach addresses many needs to manipulate and register cells to the surfaces of biosensors and other devices with high precision and fidelity.  相似文献   

3.
Our previous studies revealed that the dielectrophoresis method is effective for separating cells having different dielectric properties. The purpose of this study was to evaluate the separation characteristics of two kinds of cells by direct current (DC) voltage offset/alternating current (AC) voltage using an insulating porous membrane dielectrophoretic separator. The separation device gives dielectrophoretic (DEP) force and electrophoretic (EP) force to dispersed particles by applying the DC‐offset AC voltage. This device separates cells of different DEP properties by adopting a structure in which only the parallel plate electrodes and the insulating porous membrane are disposed in the flow path through which the cell‐suspension flows. The difference in the retention ratios of electrically homogeneous 4.5 μm or 20.0 μm diameter standard particles was a maximum of 82 points. Furthermore, the influences of the AC voltage or offset voltage on the retention ratios of mouse hybridoma 3‐2H3 cells and horse red blood cells (HRBC) were investigated. The difference in the retention ratio of the two kinds of cells was a maximum of 56 points. The separation efficiency of this device is expected to be improved by changing the device shape, number of pores, and pore placement. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1292–1300, 2016  相似文献   

4.
Human leukaemic HL-60 cells are widely used for studying interactions involving adhesion molecules [e.g. P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1)] since their rolling behaviour has been shown to mimic the dynamics of leucocyte rolling in vitro. HL-60 cells are neutrophilic promyelocytes that can undergo granulocytic differentiation upon exposure to compounds such as DMSO (dimethylsulfoxide). Using a parallel plate flow chamber functionalized with recombinant P-selectin-Fc chimaera, undifferentiated and DMSO-induced (48, 72 and 96?h) HL-60 cells were assayed for rolling behaviour. We found that depending on P-selectin incubation concentration, undifferentiated cells incurred up to a 6-fold increase in rolling velocity while subjected to an approximately 10-fold increase in biologically relevant shear stress. HL-60 cells exposed to DMSO for up to 72?h incurred up to a 3-fold increase in rolling velocity over the same shear stress range. Significantly, cells exposed for up to 96?h incurred up to a 9-fold decrease in rolling velocity, compared with undifferentiated HL-60 cells. Although cell surface and nuclear morphological changes were evident upon exposure to DMSO, flow cytometric analysis revealed that PSGL-1 expression was unchanged, irrespective of treatment duration. The results suggest that DMSO-treated HL-60 cells may be problematic as a substitute for neutrophils for trafficking studies during advanced stages of the LAC (leucocyte adhesion cascade). We suggest that remodelling of the cell surface during differentiation may affect rolling behaviour and that DMSO-treated HL-60 cells would behave differently from the normal leucocytes during inflammatory response in vivo.  相似文献   

5.
Contactless simultaneous positioning of micrometer-sized particles in suspension (e.g., copolymer beads, living cells, silicon microparts) can be performed using ultrasound. Current devices are capable of collecting particles into planes or lines by exciting a resonance in the fluid by means of a piezoelectric transducer located beneath the fluidic cavity and are designed such that a one-dimensional pressure field is created. The focus of this work is to collect cells in distinct point locations for potential drug screening array applications. A device to create two-dimensional arrays of cells within a micromachined chamber is described. The chamber is etched into a silicon wafer and sealed with glass; on the underside of the silicon layer a piezoelectric actuator is attached. A signal is applied to each of two orthogonally aligned strips electrodes defined on the surface of the piezoelectric plate. These two strip electrodes create independently addressable approximately one-dimensional pressure fields. It is shown that by applying the same signal to each electrode a diagonally aligned grid of cells can be produced. However, the independence of the two electrodes allows the application of two signals with slightly different frequencies to be applied which creates a grid of circular cell clumps highly suitable for the identified application. (c)  相似文献   

6.
Dielectrophoretic separation of cells: Continuous separation   总被引:2,自引:0,他引:2  
Dielectrophoresis is the movement of particles in non-uniform alternating and direct current (AC, DC) electric fields. When nonuniform electric fields are created between microelectrodes, cells will redistribute themselves around the electrodes, the force holding the cells in place dependig on the local electric field and on the electrical properties of the cells themselves and the suspending medium. Steric drag forces produced by a gentle fluid flow in the chamber can be used to separate cells by selectively lifting cells from potential energy wells produced by the electric field. The technique is demonstrated in the batch separation of bacteria, yeast cells, and plant cells. Continuous separation and extraction of two cell types can be achieved by repeated reversing of the fluid flow direction in phase with the switching on and off of the applied voltage, and the efficacy of the technique is demonstrated for viable and nonviable (heat-treated) yeast cells. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
A system of ultrasonic filter device consisted of an ultrasonic generator, ultrasonic cell separation chamber (resonator) and a guide column, which was developed for suspension cultures of a plant cell. The key operation parameters affecting the efficiency of separation of cells from medium fluid were found to be the voltage of ultrasonic generator, the convective flow rate, and the distance between transducer and reflector. In the high density cultures ofAloe saponaria (>17 g DCW/L), the ultrasonic filter was so efficient that the cell holding time in the separation chamber was 10-fold higher than the case without ultrasonic wave at a convective flow rate of 0.24 cm/min. Furthermore, in perfusion type of high cell density cultures, cell aggregates were observed to be densely held in the ultrasonic chamber by ultrasonic force overcoming both gravitational and drag forces by pump. The accumulated cells were finally overflowed after the holding capacity of the chamber was reached. Back pressure was applied periodically to the resonator to flush cells back to bioreactor. The ultrasonic cell separator could operate over 75 min at a convective flow rate of 0.1 cm/min and at a cell concentration of 17 g DCW/L.  相似文献   

8.
Summary We examined the effect of mechanical fluid flow and surfactant on macrophage aggregation as the indication of macrophage activation. Mechanical fluid flow enhanced aggregation in phorbol myristate acetate (PMA)-treated human myeloid leukemic cell lines (HL-60 cells), but had no effect on differentiation of PMA-treated HL-60 cells. Surfactant-TA (an artificial surfactant) inhibited fluid flow-induced aggregation, but had no effect on differentiation of PMA-treated HL-60 cells. Human alveolar macrophages spontaneously formed small aggregates without stimulation. This aggregation was enhanced by fluid flow and inhibited by surfactant-TA. Taken together, these data suggest that macrophage activation is affected by fluid flow and surfactants.  相似文献   

9.
Influence of cell deformation on leukocyte rolling adhesion in shear flow   总被引:9,自引:0,他引:9  
Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cell deformation and cell-substrate contact length as well as cell rolling velocity. A two-dimensional model was developed based on the assumption that fluid energy input to a rolling cell was essentially distributed into two parts: cytoplasmic viscous dissipation, and energy needed to break adhesion bonds between the rolling cell and its substrate. The flow fields of extracellular fluid and intracellular cytoplasm were solved using finite element methods with a deformable cell membrane represented by an elastic ring. The adhesion energy loss was calculated based on receptor-ligand kinetics equations. It was found that, as a result of shear-flow-induced cell deformation, cell-substrate contact area under high wall shear stresses (20 dyn/cm2) could be as much as twice of that under low stresses (0.5 dyn/cm2). An increase in contact area may cause more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy input may decrease due to the flattened cell shape. Our model predicts that leukocyte rolling velocity will reach a plateau as shear stress increases, which agrees with both in vivo and in vitro experimental observations.  相似文献   

10.

This study proposes a microfluidic device capable of separating monocytes from a type of cancer cell that is called T-cell acute lymphoblastic leukemia (RPMI-8402) in a continuous flow using negative and positive dielectrophoretic forces. The use of both the hydrodynamic and dielectrophoretic forces allows the separation of RPMI-8402 from monocytes based on differences in their intrinsic electrical properties and sizes. The specific crossover frequencies of monocytes and RPMI-8402 cells have been obtained experimentally. The optimum ranges of electrode pitch-to-channel height ratio at the cross sections with different electrode widths have been generally calculated by numerical simulations of the gradients of the electric field intensities and calculation their effective values (root-mean-square). In the device, the cell sorting has been conducted empirically, and then, the separation performance has been evaluated by analyzing the images before and after dielectrophoretic forces applied to the cells. In this work, the design of a chip with 77 μm gold–titanium electrode pitch was investigated to achieve high purity of monocytes of 95.2%. The proposed device can be used with relatively low applied voltages, as low as 16.5 V (peak to peak). Thus, the design can be used in biomedical diagnosis and chemical analysis applications as a lab-on-chip platform. Also, it can be used for the separation of biological cells such as bacteria, RNA, DNA, and blood cells.

  相似文献   

11.
A combined numerical/experimental study is reported of the membrane potentials and dielectrophoretically induced forces between cells, membrane pressures, and velocity of attraction of cells under the influence of an electric field. This study was designed to explore electrical and mechanical effects produced by a field on cells in close proximity or undergoing electrically induced fusion. Laplace's equation for pairs of membrane-covered spheres in close proximity was solved numerically by the boundary element method, and the electrically induced forces on the cells and between cells were obtained by evaluating the Maxwell stress tensor. The velocity of approach of erythrocyte ghosts or fused ghosts in a 60-Hz field of 6 V/mm was measured experimentally, and the data were interpreted by using Batchelor's theory for hydrodynamic interaction of hard spheres. The numerical results show clearly the origin of the dielectrophoretic pressures and forces in fused and unfused cells and the effects of a nearby cell on the induced membrane potentials. The experimental results agree well with predictions based on the simple electrical model of the cell. The analysis shows the strong effect of hydrodynamic interactions between the cells in determining their velocity of approach.  相似文献   

12.
The characterization of a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system using model polystyrene (PS) microbeads is presented. Separations of PS beads of different surface functionalization (COOH and none) and different sizes (6, 10, and 15 microm in diameter) are demonstrated. To investigate the factors influencing separation performance, particle elution times were determined as a function of particle suspension conductivity, fluid flow rate, and applied field frequency and voltage. Experimental data were analyzed using a previously reported theoretical model and good agreement between theory and experiment was found. It was shown that separation of PS beads was based on the differences in their effective dielectric properties. Particles possessing different dielectric properties were positioned at different heights in a fluid-flow profile in a thin chamber by the balance of DEP and gravitational forces, transported at different velocities under the influence of the fluid flow, and thereby separated. To explore hydrodynamic (HD) lift effects, velocities of PS beads were determined as a function of fluid flow rate in the separation chamber when no DEP field was applied. In this case, particle equilibrium height positions were governed solely by the balance of HD lift and gravitational forces. It was concluded that under the experimental conditions reported here, the DEP force was the dominant factor in controlling particle equilibrium height and that HD lift force played little role in DEP/G-FFF operation. Finally, the influence of various experimental parameters on separation performance was discussed for the optimization of DEP/G-FFF.  相似文献   

13.
The mechanical behavior of a living cell is highly dynamic and constantly adapts to its local environment. Changes in temperature and chemical stimuli, such as pH, may alter the structure of the cell and its mechanical response. Thus, the mechanical properties may serve as an indicator for the cellular state. We applied dielectrophoretic forces to suspension cells by means of two microelectrodes. The resultant stretching was analyzed on consecutive cultivation days with respect to the influence of medium consumption. Systematic experiments clearly showed that the medium consumption affected the viscoelastic properties of the investigated human leukemia cells HL-60. The shift in pH value and the culture medium depletion were identified as potentially responsible for the differing temporal development of the cell deformation. Both factors were investigated separately and a detailed analysis indicated that the changes observed in the cellular stiffness were primarily attributable to nutrient depletion.  相似文献   

14.
Nanoliter scale microbioreactor array for quantitative cell biology   总被引:14,自引:0,他引:14  
A nanoliter scale microbioreactor array was designed for multiplexed quantitative cell biology. An addressable 8 x 8 array of three nanoliter chambers was demonstrated for observing the serum response of HeLa human cancer cells in 64 parallel cultures. The individual culture unit was designed with a "C" shaped ring that effectively decoupled the central cell growth regions from the outer fluid transport channels. The chamber layout mimics physiological tissue conditions by implementing an outer channel for convective "blood" flow that feeds cells through diffusion into the low shear "interstitial" space. The 2 microm opening at the base of the "C" ring established a differential fluidic resistance up to 3 orders of magnitude greater than the fluid transport channel within a single mold microfluidic device. Three-dimensional (3D) finite element simulation were used to predict fluid transport properties based on chamber dimensions and verified experimentally. The microbioreactor array provided a continuous flow culture environment with a Peclet number (0.02) and shear stress (0.01 Pa) that approximated in vivo tissue conditions without limiting mass transport (10 s nutrient turnover). This microfluidic design overcomes the major problems encountered in multiplexing nanoliter culture environments by enabling uniform cell loading, eliminating shear, and pressure stresses on cultured cells, providing stable control of fluidic addressing, and permitting continuous on-chip optical monitoring.  相似文献   

15.
Cardiac excitation waves that arise in heart tissues have long been an important research topic because they are related to various cardiac arrhythmia. Investigating their properties based on intact animal whole hearts is important but quite demanding and expensive. Subsequently, dissociated cardiac cell cultures have been used as an alternative. Here, we access the usefulness of cardiomyocyte cell line HL-1 in studying generic properties of cardiac waves. Spontaneous wave activities in confluent populations of HL-1 cells are monitored using a phase-contrast optical mapping system and a microelectrode array recording device. We find that high-density cultures of HL-1 cells can support well-defined reentries. Their conduction velocity and rotation period both increase over few days. The increasing trend of rotation period is opposite to the case of control experiments using primary cultures of mouse atrial cells. The progressive myolysis of HL-1 seems responsible for this difference.  相似文献   

16.
This paper describes a planar array of microelectrodes developed for monitoring the electrical activity of cells in culture. The device allows the incorporation of surface topographical features in an insulating layer above the electrodes. Semiconductor technology is employed for the fabrication of the gold electrodes and for the deposition and patterning of an insulating layer of silicon nitride. The electrodes have been tested using a cardiac cell culture of chick embryo myocytes, and the physical beating of the cultured cells correlated with the simultaneous extracellular voltage measurements obtained. It was found that extracellular stimulation of the cells was possible via the same electrodes used for recording.  相似文献   

17.
In this work we present a novel concept of active microwells based on cylindrical wells able to vertically trap and control single particles by means of negative dielectrophoresis. The device is fabricated by drilling through holes on a polyimide substrate with copper-gold or aluminum metals, forming three annular electrodes within the well. A channel under the device provides a fluid flow filling the microwell by capillarity. Particles are delivered from the top by a microdispenser and applying sinusoidal signals to the electrodes at frequencies ranging from 100kHz to 1.5MHz and amplitudes between 2V and 7V they are successfully trapped and levitated at the level of the central electrode in the middle of microwells with a diameter of 125mum. By changing signal phases, other configurations are also enabled to load particles in the well or eject them from the bottom. The extension to an array of microwells is presented and design rules are described for routing electrode connections and setting signal parameters. K562 cells cultured with Ara-C 1000nM were successfully trapped and controlled in physiological media. Polystyrene beads were also levitated in water and were used for experimental measurements on minimum amplitudes and phase differences in the signals required to levitate beads, confirming the results obtained by simulation.  相似文献   

18.
The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell-cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals.  相似文献   

19.
The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.  相似文献   

20.
This paper reports a new microfluidic device capable of performing optically induced flow cytometry (OIFC). This enables it to continuously count and to sort microparticles based on optically induced dielectrophoretic (ODEP) forces. Gravity was used to drive the particles instead of using syringe pumps. The particles were then focused inside a sample channel by the ODEP forces and then passed through a detection region. A pair of optical fibers were embedded into fiber channels to count the number of particles and analyze the particle size in real time. Using 20.9 and 9.7 microm polystyrene microparticles, the average light intensity were about 63.67 and 8.80 units, with a coefficient-of-variation (CV) of 7.46 and 25.57%, respectively. This demonstrated that these two particle sizes could be successfully distinguished. After detecting the number and size of the microparticles, an optically induced dynamic switch (ODS) was used to sort microparticles to downstream fluidic outlets. The ODS used ODEP forces generated by different illumination intensities or optical line widths. The ODS was composed of two virtual electrodes which controlled particle movement in two dimensions. The ODS can successfully sort microparticles with different sizes continuously. The development of the OIFC device is a major advancement in the design of microparticle counting and sorting devices. Applications in future biomedical applications for cell counting and manipulation are envisioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号