首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The well-known condition for standing stability in static situations is that the vertical projection of the centre of mass (CoM) should be within the base of support (BoS). On the basis of a simple inverted pendulum model, an extension of this rule is proposed for dynamical situations: the position of (the vertical projection of) the CoM plus its velocity times a factor (square root l/g) should be within the BoS, l being leg length and g the acceleration of gravity. It is proposed to name this vector quantity 'extrapolated centre of mass position' (XcoM). The definition suggests as a measure of stability the 'margin of stability' b, the minimum distance from XcoM to the boundaries of the BoS. An alternative measure is the temporal stability margin tau, the time in which the boundary of the BoS would be reached without intervention. Some experimental data of subjects standing on one or two feet, flatfoot and tiptoe, are presented to give an idea of the usual ranges of these margins of stability. Example data on walking are also presented.  相似文献   

2.
Voluntary arm-raising movement performed during the upright human stance position imposes a perturbation to an already unstable bipedal posture characterised by a high body centre of mass (CoM). Inertial forces due to arm acceleration and displacement of the CoM of the arm which alters the CoM position of the whole body represent the two sources of disequilibrium. A current model of postural control explains equilibrium maintenance through the action of anticipatory postural adjustments (APAs) that would offset any destabilising effect of the voluntary movement. The purpose of this paper was to quantify, using computer simulation, the postural perturbation due to arm raising movement. The model incorporated four links, with shoulder, hip, knee and ankle joints constrained by linear viscoelastic elements. The input of the model was a torque applied at the shoulder joint. The simulation described mechanical consequences of the arm-raising movement for different initial conditions. The variables tested were arm inertia, the presence or not of gravity field, the initial standing position and arm movement direction. Simulations showed that the mechanical effect of arm-raising movement was mainly local, that is to say at the level of trunk and lower limbs and produced a slight forward displacement of the CoM (1.5 mm). Backward arm-raising movement had the same effect on the CoM displacement as the forward arm-raising movement. When the mass of the arm was increased, trunk rotation increased producing a CoM displacement in the opposite direction when compared to arm movement performed without load. Postural disturbance was minimised for an initial standing posture with the CoM vertical projection corresponding to the ankle joint axis of rotation. When the model was reduced to two degrees of freedom (ankle and shoulder joints only) the postural perturbation due to arm-raising movement increased compared to the four-joints model. On the basis of these results the classical assumption that APAs stabilise the CoM is challenged.  相似文献   

3.
The purpose of this study was to use a quaternion rotation matrix in combination with an integration approach to transform translatory accelerations of the centre of mass (CoM) from an inertial measurement unit (IMU) during walking, from the object system onto the global frame. Second, this paper utilises double integration to determine the relative change in position of the CoM from the vertical acceleration data. Five participants were tested in which an IMU, consisting of accelerometers, gyroscopes and magnetometers was attached on the lower spine estimated centre of mass. Participants were asked to walk three times through a calibrated volume at their self-selected walking speed. Synchronized data were collected by an IMU and an optical motion capture system (OMCS); both measured at 100 Hz. Accelerations of the IMU were transposed onto the global frame using a quaternion rotation matrix. Translatory acceleration, speed and relative change in position from the IMU were compared with the derived data from the OMCS. Peak acceleration in vertical axis showed no significant difference (p?0.05). Difference between peak and trough speed showed significant difference (p<0.05) but relative peak-trough position between the IMU and OMCS did not show any significant difference (p?0.05). These results indicate that quaternions, in combination with Simpsons rule integration, can be used in transforming translatory acceleration from the object frame to the global frame and therefore obtain relative change in position, thus offering a solution for using accelerometers in accurate global frame kinematic gait analyses.  相似文献   

4.
At push-off, the mass centre of gravity of the body must be positioned in front of the foot to prevent a somersault. When starting a sprint from out the standing position the use of a step backwards is necessary for maximal acceleration. The aim of the present study was to quantify the positive contribution to push off from a backward step of the leg, which seems to be counterproductive. Ten subjects were instructed to sprint start in three different ways: (a) starting from the standing position just in front of the force platform on the subject's own initiative, (b) starting from the standing position on the force platform with no step backward allowed, and (c) starting out of the starting position with one leg in front of the force platform and the push-off leg on the force platform. A step backwards was observed in 95% of the starts from the standing position. The push-off force was highest in starting type (a), which had the shortest time to build up the push-off force. The results indicate a positive contribution to the force and power from a step backwards. We advocate developing a training program with special attention to the phenomenon step backwards.  相似文献   

5.
In equestrian sports, it is generally assumed that rising and sitting trot load the horse's back differently. The objective of this study was to quantify the load on the horse's back in these riding techniques. Kinematic data of 13 riders were collected in rising and sitting trot. The time-history of the position of the rider's centre of mass (CoM) was calculated, and differentiated twice to obtain the acceleration of the CoM. The reaction force between the rider and the horse's back was calculated from the acceleration. Forces were divided by the body weight of the rider to obtain dimensionless forces. As expected, the computed average vertical force did not differ between riding techniques and was not significantly different from the body weight of the riders. At trot, two force peaks were present during one stride cycle. Both peaks in rising trot were significantly lower compared to sitting trot (peak 1: 2.54±0.30 versus 2.92±0.29; p<0.001; peak 2: 1.95±0.34 versus 3.03±0.32; p<0.001). This supports the general assumption that rising trot is less demanding for the horse than sitting trot.  相似文献   

6.
In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump.  相似文献   

7.
In 1984, Helene (Am. J. Physics 52:656) and Alexander (Am. Scientist 72:348–354) presented equations which purported to explain how lower limb length limited maximum walking speed in humans. The equations were based on a simplified model of human walking in which the center of mass (CoM) “vaults” over the supporting leg. Increasing walking speed by increasing stride frequency or stride length would increase the upward acceleration of the CoM in the first half of stance phase, to the point that it would be greater than the downward pull of gravity, and the individual would become airborne. This constitutes running by most definitions. While these models ignored various mechanical factors, such as knee flexion during midstance, that reduce the vertical movement of the CoM, the general idea is plausible inasmuch as the CoM of the body does oscillate vertically with each step. One hypothesis tested here is whether it is indeed the interaction between the pull of gravity and the individual's own upward acceleration that determines at what speed (or cadence) he changes from walking to running. Another hypothesis considered is that increased lower limb length (L) was selected for in early hominids, because of the locomotor advantages of longer lower limbs. Results indicate, however, that while L was clearly related to maximum possible walking speed, it was not an important factor in determining maximum “comfortable” walking speed. These and other results from the recent literature suggest that increased lower limb length provided no selective advantage in locomotion, and other explanations should be sought. © 1996 Wiley-Liss, Inc.  相似文献   

8.
In order to determine the type of somatosensory information for postural control that is most affected by neuropathy, we compared the relative effects of three methods of sway-referencing the surface in a group of subjects with profound loss of somatosensory function associated with sensory polyneuropathy from diabetes with age-matched control subjects. Sway-referencing disrupted somatosensory feedback for postural control by servo-controlling the dorsi- and plantar-flexion rotation of the support surface in proportion to anterior-posterior excursion of (1) ankle angle, (2) center of body mass (CoM) angle or (3) filtered center of pressure (CoP). Postural sway in subjects with somatosensory loss was significantly larger than normal on a firm surface but not on the sway-referenced surfaces, suggesting that sway-referencing disrupts somatosensory information for postural control already disrupted by neuropathy. Control subjects standing on any sway-referenced surface swayed significantly more than neuropathy subjects who stood on a firm surface, suggesting that sway-referencing disrupts more somatosensory information than disrupted by severe neuropathy. CoP sway-referencing was less sensitive than ankle or CoM sway-referencing for distinguishing postural sway in subjects with somatosensory loss from age-matched control subjects. Given that filtered CoP sway-referencing disrupts the ability to utilize somatosensory information related to surface reactive force to a greater extent than the other two methods of sway-referencing, then these results support the hypothesis that subjects with diabetic peripheral neuropathy have lost more CoP information, than ankle or CoM angle information, for controlling postural sway in stance.  相似文献   

9.
In order to determine the type of somatosensory information for postural control that is most affected by neuropathy, we compared the relative effects of three methods of sway-referencing the surface in a group of subjects with profound loss of somatosensory function associated with sensory polyneuropathy from diabetes with age-matched control subjects. Sway-referencing disrupted somatosensory feedback for postural control by servo-controlling the dorsi- and plantar-flexion rotation of the support surface in proportion to anterior-posterior excursion of (1) ankle angle, (2) center of body mass (CoM) angle or (3) filtered center of pressure (CoP). Postural sway in subjects with somatosensory loss was significantly larger than normal on a firm surface but not on the sway-referenced surfaces, suggesting that sway-referencing disrupts somatosensory information for postural control already disrupted by neuropathy. Control subjects standing on any sway-referenced surface swayed significantly more than neuropathy subjects who stood on a firm surface, suggesting that sway-referencing disrupts more somatosensory information than disrupted by severe neuropathy. CoP sway-referencing was less sensitive than ankle or CoM sway-referencing for distinguishing postural sway in subjects with somatosensory loss from age-matched control subjects. Given that filtered CoP sway-referencing disrupts the ability to utilize somatosensory information related to surface reactive force to a greater extent than the other two methods of sway-referencing, then these results support the hypothesis that subjects with diabetic peripheral neuropathy have lost more CoP information, than ankle or CoM angle information, for controlling postural sway in stance.  相似文献   

10.
This study compares human walking and running, and places them within the context of other mammalian gaits. We use a collision-based approach to analyse the fundamental dynamics of the centre of mass (CoM) according to three angles derived from the instantaneous force and velocity vectors. These dimensionless angles permit comparisons across gait, species and size. The collision angle Φ, which is equivalent to the dimensionless mechanical cost of transport CoTmech, is found to be three times greater during running than walking of humans. This threefold difference is consistent with previous studies of walking versus trotting of quadrupeds, albeit tends to be greater in the gaits of humans and hopping bipeds than in quadrupeds. Plotting the collision angle Φ together with the angles of the CoM force vector Θ and velocity vector Λ results in the functional grouping of bipedal and quadrupedal gaits according to their CoM dynamics—walking, galloping and ambling are distinguished as separate gaits that employ collision reduction, whereas trotting, running and hopping employ little collision reduction and represent more of a continuum that is influenced by dimensionless speed. Comparable with quadrupedal mammals, collision fraction (the ratio of actual to potential collision) is 0.51 during walking and 0.89 during running, indicating substantial collision reduction during walking, but not running, of humans.  相似文献   

11.
B. Gutnik  J. Skirius  G. Hudson  D. Gale   《HOMO》2004,54(3):215-228
The maximal torque effect of the middle portion of action of the deltoid muscle while raising an outstretched upper limb was measured from left and right sides of normal untrained young adults and of the same age elite athletes. Seventeen strongly right-handed untrained males and females and 10 elite tennis players were tested. All participants were required to raise (abduct) one arm (right and then left, or vice versa) as fast as possible with maximal amplitude while standing on an electronic platform scale which measured to 0.001 kg. An assumed force at the centre of mass of the entire upper limb was considered. The force consisted of two components, namely static weight force of the upper limb and a dynamic force component created by upward acceleration of the limb. Using regression equations and scaling methods the static weight of the upper limb was derived and combined with the dynamic component to produce the total force, applied to the centre of mass of the limb. The total force multiplied by the distance from the centre of mass to point of rotation of the limb equated to the torque produced by deltoid muscle. Using video system analyses the angle of abduction was measured for each individual exercise. The additional anthropometrical tests identified proportionality and body mass indices for each participant.

There was no significant difference in dynamic force and torque between left and right limb from the three groups. Sportsmen demonstrated greater lateral abduction when performing the exercise from the dominant side of the body. Sportsmen also demonstrated greater range of abduction, bigger dynamic force and torque on both sides in comparison to untrained adults. Remarkably, the absolute and relative length of arms of athletes were shorter in comparison to untrained males, but the radius of gyration from the stretched upper limb (from its centre of gravity to the shoulder joint) were greater. This phenomenon may be due to distal shifting of the gravity center of the entire upper limb in elite athletes, perhaps, because greater investment of the distal portion of the limb with skeletal muscle tissue.  相似文献   


12.
Postural stability has traditionally been examined through spatial measures of the center of mass (CoM) or center of pressure (CoP), where larger amounts of CoM or CoP movements are considered signs of postural instability. However, for stabilization, the postural control system may utilize additional information about the CoM or CoP such as velocity, acceleration, and the temporal margin to a stability boundary. Postural time-to-contact (TtC) is a variable that can take into account this additional information about the CoM or CoP. Postural TtC is the time it would take the CoM or CoP, given its instantaneous trajectory, to contact a stability boundary. This is essentially the time the system has to reverse any perturbation before stance is threatened. Although this measure shows promise in assessing postural stability, the TtC values derived between studies are highly ambiguous due to major differences in how they are calculated. In this study, various methodologies used to assess postural TtC were compared during quiet stance and induced-sway conditions. The effects of the different methodologies on TtC values will be assessed, and issues regarding the interpretation of TtC data will also be discussed.  相似文献   

13.
Angular impulse generation is dependent on the position of the total body center of mass (CoM) relative to the ground reaction force (GRF) vector during contact with the environment. The purpose of this study was to determine how backward angular impulse was regulated during two forward translating tasks. Control of the relative angle between the CoM and the GRF was hypothesized to be mediated by altering trunk-leg coordination. Eight highly skilled athletes performed a series of standing reverse somersaults and reverse timers. Sagittal plane kinematics, GRF, and electromyograms of lower extremity muscles were acquired during the take-off phase of both tasks. The magnitude of the backward angular impulse generated during the push interval of both tasks was mediated by redirecting the GRF relative to the CoM. During the reverse timer, backward angular impulse generated during the early part of the take-off phase was negated by limiting backward trunk rotation and redirecting the GRF during the push interval. Biarticular muscles crossing the knee and hip coordinated the control of GRF direction and CoM trajectory via modulation of trunk-leg coordination.  相似文献   

14.

Background Context

Research employing gait measurements indicate asymmetries in ground reaction forces and suggest relationships between these asymmetries, neurological dysfunction and spinal deformity. Although, studies have documented the use of centre of pressure (CoP) and net joint moments in gait assessment and have assessed centre of mass (CoM)-CoP distance relationships in clinical conditions, there is a paucity of information relating to the moments about CoM. It is commonly considered that CoM is situated around S2 vertebra in normal upright posture and hence this study uses S2 vertebral prominence as reference point relative to CoM.

Purpose

To assess and establish asymmetry in the CoP pattern and moments about S2 vertebral prominence during level walking and its relationship to spinal deformity in adolescents with scoliosis.

Patient sample

Nine Adolescent Idiopathic Scoliosis subjects (8 females and 1 male with varying curve magnitudes and laterality) scheduled for surgery within 2–3 days after data collection, took part in this study.

Outcome measures

Kinetic and Kinematic Gait assessment was performed with an aim to estimate the CoP displacement and the moments generated by the ground reaction force about the S2 vertebral prominence during left and right stance during normal walking.

Methods

The study employed a strain gauge force platform to estimate the medio-lateral and anterior-posterior displacement of COP and a six camera motion analysis system to track the reflective markers to assess the kinematics. The data were recorded simultaneously.

Results

Results indicate wide variations in the medio lateral direction CoP, which could be related to the laterality of both the main and compensation curves. This variation is not evident in the anterior-posterior direction. Similar results were recorded for moments about S2 vertebral prominence. Subjects with higher left compensation curve had greater displacement to the left.

Conclusion

Although further longitudinal studies are needed, results indicate that the variables identified in this study are applicable to initial screening and surgical evaluation of scoliosis.  相似文献   

15.
The oscillatory behavior of the center of mass (CoM) and the corresponding ground reaction force (GRF) of human gait for various gait speeds can be accurately described in terms of resonance using a spring–mass bipedal model. Resonance is a mechanical phenomenon that reflects the maximum responsiveness and energetic efficiency of a system. To use resonance to describe human gait, we need to investigate whether resonant mechanics is a common property under multiple walking conditions. Body mass and leg stiffness are determinants of resonance; thus, in this study, we investigated the following questions: (1) whether the estimated leg stiffness increased with inertia, (2) whether a resonance-based CoM oscillation could be sustained during a change in the stiffness, and (3) whether these relationships were consistently observed for different walking speeds. Seven healthy young subjects participated in over-ground walking trials at three different gait speeds with and without a 25-kg backpack. We measured the GRFs and the joint kinematics using three force platforms and a motion capture system. The leg stiffness was incorporated using a stiffness parameter in a compliant bipedal model that best fitted the empirical GRF data. The results showed that the leg stiffness increased with the load such that the resonance-based oscillatory behavior of the CoM was maintained for a given gait speed. The results imply that the resonance-based oscillation of the CoM is a consistent gait property and that resonant mechanics may be useful for modeling human gait.  相似文献   

16.
In the light of experimental results showing significant forward centre of mass (CoM) displacements within the base of support, this study investigated if whole body reaching movements can be executed whilst keeping the CoM fixed in the horizontal axis. Using kinematic simulation techniques, angular configurations were recreated from experimental data imposing two constraints: a constant horizontal position of the CoM and an identical trajectory of the hand to grasp an object. The comparison between recorded and simulated trials showed that stabilisation of the CoM was associated with greater backward hip displacements, which became more marked with increasing object distance. This was in contrast to recorded trials showing reductions in backward hip displacements with increasing distance. Results also showed that modifications to angular displacements were necessary only at the shoulder and hip joints, but that these modifications were within the limits of joint mobility. The analysis of individual joint torques revealed that the pattern and timing of simulated trials were similar to those recorded experimentally. Peak joint torque values showed particularly that keeping the CoM at a constant horizontal position resulted in significantly smaller ankle peak flexor and extensor torques. It may be concluded from this study that `stabilising' the CoM during human whole body reaching represents a feasible strategy, but not the one chosen by subjects under experimental conditions. Our results also do not support the idea of the CoM as the stabilised reference value for the coordination between posture and goal-directed movements. Received: 22 September 1998 / Accepted in revised form: 2 June 1999  相似文献   

17.
To assess if multiple sclerosis patients with proprioceptive impairment are specifically affected during quiet standing with eyes open and how they can develop motor compensatory processes, 56 patients, classified from sensory clinical tests as ataxo-spastic (MS-AS) or only having spasticity (MS-S), were compared to 23 healthy adults matched for age. The postural strategies were assessed from the centre-of-pressure trajectories (CP), measured from a force platform in the eyes open standing condition for a single trial lasting 51.2 s. The vertical projection of the centre of gravity (CGv) and its vertical difference from the CP (CP-CGv) were then estimated through a biomechanical relationship. These two movements permit the characterization of the postural performance and the horizontal acceleration communicated to the CG and from that, the global energy expenditure, respectively. Both MS-AS and MS-S groups demonstrate larger CGv and CP-CGv movements than healthy individuals of the same age. Whilst similar CGv values are noticed in both MS subgroups, suggesting similar postural performances, statistically significant differences are observed for the CP-CGv component. Biomechanically, this feature expresses the necessity for the MS-AS group to develop augmented neuro-muscular means to control their body movements, as compared to the MS-S group. By demonstrating for both groups of patients similar postural performance accompanied by a varying degree of energy expenditure to maintain undisturbed upright stance, this study reveals that MS-AS patients which are affected by proprioceptive loss can compensate for this deficit with more efficient control strategies, when standing still with their eyes open.  相似文献   

18.
Theoretical and empirical work indicates that the central nervous system is able to stabilize motor performance by selectively suppressing task-relevant variability (TRV), while allowing task-equivalent variability (TEV) to occur. During unperturbed bipedal standing, it has previously been observed that, for task variables such as the whole-body center of mass (CoM), TEV exceeds TRV in amplitude. However, selective control (and correction) of TRV should also lead to different temporal characteristics, with TEV exhibiting higher temporal persistence compared to TRV. The present study was specifically designed to test this prediction. Kinematics of prolonged quiet standing (5 minutes) was measured in fourteen healthy young participants, with eyes closed. Using the uncontrolled manifold analysis, postural variability in six sagittal joint angles was decomposed into TEV and TRV with respect to four task variables: (1) center of mass (CoM) position, (2) head position, (3) trunk orientation and (4) head orientation. Persistence of fluctuations within the two variability components was quantified by the time-lagged auto-correlation, with eight time lags between 1 and 128 seconds. The pattern of results differed between task variables. For three of the four task variables (CoM position, head position, trunk orientation), TEV significantly exceeded TRV over the entire 300 s-period.The autocorrelation analysis confirmed our main hypothesis for CoM position and head position: at intermediate and longer time delays, TEV exhibited higher persistence than TRV. Trunk orientation showed a similar trend, while head orientation did not show a systematic difference between TEV and TRV persistence. The combination of temporal and task-equivalent analyses in the present study allow a refined characterization of the dynamic control processes underlying the stabilization of upright standing. The results confirm the prediction, derived from computational motor control, that task-equivalent fluctuations for specific task variables show higher temporal persistence compared to task-relevant fluctuations.  相似文献   

19.
Humans use equal push-off and heel strike work during the double support phase to minimize the mechanical work done on the center of mass (CoM) during the gait. Recently, a step-to-step transition was reported to occur over a period of time greater than that of the double support phase, which brings into question whether the energetic optimality is sensitive to the definition of the step-to-step transition. To answer this question, the ground reaction forces (GRFs) of seven normal human subjects walking at four different speeds (1.1-2.4 m/s) were measured, and the push-off and heel strike work for three differently defined step-to-step transitions were computed based on the force, work, and velocity. To examine the optimality of the work and the impulse data, a hybrid theoretical-empirical analysis is presented using a dynamic walking model that allows finite time for step-to-step transitions and incorporates the effects of gravity within this period. The changes in the work and impulse were examined parametrically across a range of speeds. The results showed that the push-off work on the CoM was well balanced by the heel strike work for all three definitions of the step-to-step transition. The impulse data were well matched by the optimal impulse predictions (R(2)>0.7) that minimized the mechanical work done on the CoM during the gait. The results suggest that the balance of push-off and heel strike energy is a consistent property arising from the overall gait dynamics, which implies an inherited oscillatory behavior of the CoM, possibly by spring-like leg mechanics.  相似文献   

20.
Kinematic and center of mass (CoM) mechanical variables used to define terrestrial gaits are compared for various tetrapod species. Kinematic variables (limb phase, duty factor) provide important timing information regarding the neural control and limb coordination of various gaits. Whereas, mechanical variables (potential and kinetic energy relative phase, %Recovery, %Congruity) provide insight into the underlying mechanisms that minimize muscle work and the metabolic cost of locomotion, and also influence neural control strategies. Two basic mechanisms identified by Cavagna et al. (1977. Am J Physiol 233:R243-R261) are used broadly by various bipedal and quadrupedal species. During walking, animals exchange CoM potential energy (PE) with kinetic energy (KE) via an inverted pendulum mechanism to reduce muscle work. During the stance period of running (including trotting, hopping and galloping) gaits, animals convert PE and KE into elastic strain energy in spring elements of the limbs and trunk and regain this energy later during limb support. The bouncing motion of the body on the support limb(s) is well represented by a simple mass-spring system. Limb spring compliance allows the storage and return of elastic energy to reduce muscle work. These two distinct patterns of CoM mechanical energy exchange are fairly well correlated with kinematic distinctions of limb movement patterns associated with gait change. However, in some cases such correlations can be misleading. When running (or trotting) at low speeds many animals lack an aerial period and have limb duty factors that exceed 0.5. Rather than interpreting this as a change of gait, the underlying mechanics of the body's CoM motion indicate no fundamental change in limb movement pattern or CoM dynamics has occurred. Nevertheless, the idealized, distinctive patterns of CoM energy fluctuation predicted by an inverted pendulum for walking and a bouncing mass spring for running are often not clear cut, especially for less cursorial species. When the kinematic and mechanical patterns of a broader diversity of quadrupeds and bipeds are compared, more complex patterns emerge, indicating that some animals may combine walking and running mechanics at intermediate speeds or at very large size. These models also ignore energy costs that are likely associated with the opposing action of limbs that have overlapping support times during walking. A recent model of terrestrial gait (Ruina et al., 2005. J Theor Biol, in press) that treats limb contact with the ground in terms of collisional energy loss indicates that considerable CoM energy can be conserved simply by matching the path of CoM motion perpendicular to limb ground force. This model, coupled with the earlier ones of pendular exchange during walking and mass-spring elastic energy savings during running, provides compelling argument for the view that the legged locomotion of quadrupeds and other terrestrial animals has generally evolved to minimize muscle work during steady level movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号