首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucocorticoids have been implicated in hypoglycemia-induced autonomic failure but also contribute to normal counterregulation. To determine the influence of normal and hypoglycemia-induced levels of glucocorticoids on counterregulatory responses to acute and repeated hypoglycemia, we compared plasma catecholamines, corticosterone, glucagon, and glucose requirements in male wild-type (WT) and glucocorticoid-deficient, corticotropin-releasing hormone knockout (CRH KO) mice. Conscious, chronically cannulated, unrestrained WT and CRH KO mice underwent a euglycemic (Prior Eu) or hypoglycemic clamp (Prior Hypo) on day 1 followed by a hypoglycemic clamp on day 2 (blood glucose both days, 65 +/- 1 mg/dl). Baseline epinephrine and glucagon were similar, and norepinephrine was elevated, in CRH KO vs. WT mice. CRH KO corticosterone was almost undetectable (<1.5 microg/dl) and unresponsive to hypoglycemia. CRH KO glucose requirements were significantly higher during day 1 hypoglycemia despite epinephrine and glucagon responses that were comparable to or greater than those in WT. Hyperinsulinemic euglycemia did not increase hormones or glucose requirements above baseline. On day 2, Prior Hypo WT had significantly higher glucose requirements and significantly lower corticosterone and glucagon responses. Prior Hypo and Prior Eu CRH KO mice had similar day 2 glucose requirements. However, Prior Hypo CRH KO mice had significantly lower day 2 epinephrine and norepinephrine vs. Prior Eu CRH KO and tended to have lower glucagon than on day 1. We conclude that glucocorticoid insufficiency in CRH KO mice correlates with 1) impaired counterregulation during acute hypoglycemia and 2) complex effects after repeated hypoglycemia, neither preventing decreased hormone responses nor worsening glucose requirements.  相似文献   

2.
Antecedent hypoglycemia leads to impaired counterregulation and hypoglycemic unawareness. To ascertain whether antecedent portal vein hypoglycemia impairs portal vein glucose sensing, thereby inducing counterregulatory failure, we compared the effects of antecedent hypoglycemia, with and without normalization of portal vein glycemia, upon the counterregulatory response to subsequent hypoglycemia. Male Wistar rats were chronically cannulated in the carotid artery (sampling), jugular vein (glucose and insulin infusion), and mesenteric vein (glucose infusion). On day 1, the following three distinct antecedent protocols were employed: 1) HYPO-HYPO: systemic hypoglycemia (2.52 +/- 0.11 mM); 2) HYPO-EUG: systemic hypoglycemia (2.70 +/- 0.03 mM) with normalization of portal vein glycemia (portal vein glucose = 5.86 +/- 0.10 mM); and 3) EUG-EUG: systemic euglycemia (6.33 +/- 0.31 mM). On day 2, all groups underwent a hyperinsulinemic-hypoglycemic clamp in which the fall in glycemia was controlled so as to reach the nadir (2.34 +/- 0.04 mM) by minute 75. Counterregulatory hormone responses were measured at basal (-30 and 0) and during hypoglycemia (60-105 min). Compared with EUG-EUG, antecedent hypoglycemia (HYPO-HYPO) significantly blunted the peak epinephrine (10.44 +/- 1.35 vs. 15.75 +/- 1.33 nM: P = 0.01) and glucagon (341 +/- 16 vs. 597 +/- 82 pg/ml: P = 0.03) responses to next-day hypoglycemia. Normalization of portal glycemia during systemic hypoglycemia on day 1 (HYPO-EUG) prevented blunting of the peak epinephrine (15.59 +/- 1.43 vs. 15.75 +/- 1.33 nM: P = 0.94) and glucagon (523 +/- 169 vs. 597 +/- 82 pg/ml: P = 0.66) responses to day 2 hypoglycemia. Consistent with hormonal responses, the glucose infusion rate during day 2 hypoglycemia was substantially elevated in HYPO-HYPO (74 +/- 12 vs. 49 +/- 4 micromol x kg(-1) x min(-1); P = 0.03) but not HYPO-EUG (39 +/- 7 vs. 49 +/- 4 micromol x kg(-1) x min(-1): P = 0.36). Antecedent hypoglycemia local to the portal vein is required for the full induction of hypoglycemia-associated counterregulatory failure with slow-onset hypoglycemia.  相似文献   

3.
The aims of this study were 1) to determine whether differential glycemic thresholds are the mechanism responsible for the sexual dimorphism present in neuroendocrine responses during hypoglycemia and 2) to define the differences in counterregulatory physiological responses that occur over a range of mild to moderate hypoglycemia in healthy men and women. Fifteen (8 male, 7 female) lean healthy adults underwent four separate randomized 2-h hyperinsulinemic (1.5 mU. kg(-1).min(-1)) glucose clamp studies at euglycemia (90 mg/dl) or hypoglycemia of 70, 60, or 50 mg/dl. Plasma insulin levels were similar during euglycemic and hypoglycemic studies (91-96 +/- 8 microU/ml) in men and women. Hypoglycemia of 70, 60, and 50 mg/dl all resulted in significant increases (P < 0.05, P < 0.01) in epinephrine, glucagon, growth hormone, cortisol, and pancreatic polypeptide levels compared with euglycemic studies in men and women. Plasma norepinephrine levels were increased (P < 0.05) only relative to euglycemic studies at a hypoglycemia of 50 mg/dl. Muscle sympathetic nerve activity (MSNA) increased significantly during hyperinsulinemic-euglycemic control studies. Further elevations of MSNA did not occur until hypoglycemia of 60 mg/dl in both men and women. Plasma epinephrine, glucagon, growth hormone, and pancreatic polypeptide were significantly increased in men compared with women during hypoglycemia of 70, 60, and 50 mg/dl. MSNA, heart rate, and systolic blood pressure responses were also significantly increased in men at hypoglycemia of 60 and 50 mg/dl. In summary, these studies have demonstrated that, in healthy men and women, the glycemic thresholds for activation of epinephrine, glucagon, growth hormone, cortisol, and pancreatic polypeptide occur between 70 and 79 mg/dl. Thresholds for activation of MSNA occur between 60 and 69 mg/dl, whereas norepinephrine is not activated until glycemia is between 50 and 59 mg/dl. We conclude that 1) differential glycemic thresholds are not the cause of the sexual dimorphism present in counterregulatory responses to hypoglycemia; 2) reduced central nervous system efferent input appears to be the mechanism responsible for lowered neuroendocrine responses to hypoglycemia in women; and 3) physiological counterregulatory responses (neuroendocrine, cardiovascular, and autonomic nervous system) are reduced across a broad range of hypoglycemia in healthy women compared with healthy men.  相似文献   

4.
The aim of this study was to test the hypothesis that antecedent short-term administration of estradiol or progesterone into the central nervous system (CNS) reduces levels of neuroendocrine counterregulatory hormones during subsequent hypoglycemia. Conscious unrestrained male Sprague-Dawley rats were studied during randomized 2-day experiments. Day 1 consisted of an 8-h lateral ventricle infusion of estradiol (1 mug/mul; n = 9), progesterone (1 mug/mul; n = 9), or saline (0.2 mul/min; n = 10). On day 2, a 2-h hyperinsulinemic (30 pmol.kg(-1).min(-1)) hypoglycemic (2.9 +/- 0.2 mM) clamp was performed on all rats. Central administration of estradiol on day 1 resulted in significantly lower plasma epinephrine levels during hypoglycemia compared with saline, whereas central administration of progesterone resulted in increased levels of plasma norepinephrine and decreased levels of corticosterone both at baseline and during hypoglycemia. Glucagon responses during hypoglycemia were unaffected by prior administration of estradiol or progesterone. Endogenous glucose production following day 1 estradiol was significantly lower during day 2 hypoglycemia, and consequently, the glucose infusion rate to maintain the glycemia was significantly greater after estradiol administration compared with saline. These data suggest that 1) CNS administration of both female reproductive hormones can have rapid effects in modulating levels of counterregulatory hormones during subsequent hypoglycemia in conscious male rats, 2) forebrain administration of reproductive hormones can significantly reduce pituitary adrenal and sympathetic nervous system drive during hypoglycemia, 3) reproductive steroid hormones produce differential effects on sympathetic nervous system activity during hypoglycemia, and 4) reduction of epinephrine resulted in significantly blunted metabolic counterregulatory responses during hypoglycemia.  相似文献   

5.
In the present study the hypothesis tested was that prior exercise may blunt counterregulatory responses to subsequent hypoglycemia. Healthy subjects [15 females (f)/15 males (m), age 27 +/- 1 yr, body mass index 22 +/- 1 kg/m(2), hemoglobin A(Ic) 5.6 +/- 0.5%] were studied during 2-day experiments. Day 1 involved either 90-min morning and afternoon cycle exercise at 50% maximal O2 uptake (VO2(max)) (priorEXE, n = 16, 8 m/8 f) or equivalent rest periods (priorREST, n = 14, 7 m/7 f). Day 2 consisted of a 2-h hypoglycemic clamp in all subjects. Endogenous glucose production (EGP) was measured using [3-3H]glucose. Muscle sympathetic nerve activity (MSNA) was measured using microneurography. Day 2 insulin (87 +/- 6 microU/ml) and plasma glucose levels (54 +/- 2 mg/dl) were equivalent after priorEXE and priorREST. Significant blunting (P < 0.01) of day 2 norepinephrine (-30 +/- 4%), epinephrine (-37 +/- 6%), glucagon (-60 +/- 4%), growth hormone (-61 +/- 5%), pancreatic polypeptide (-47 +/- 4%), and MSNA (-90 +/- 8%) responses to hypoglycemia occurred after priorEXE vs. priorREST. EGP during day 2 hypoglycemia was also suppressed significantly (P < 0.01) after priorEXE compared with priorREST. In summary, two bouts of exercise (90 min at 50% VO2(max)) significantly reduced glucagon, catecholamines, growth hormone, pancreatic polypeptide, and EGP responses to subsequent hypoglycemia. We conclude that, in normal humans, antecedent prolonged moderate exercise blunts neuroendocrine and metabolic counterregulatory responses to subsequent hypoglycemia.  相似文献   

6.
Antecedent increases of corticosteroids can blunt counterregulatory responses to subsequent stress. Our aim was to determine whether prior activation of type I corticosteroid (mineralocorticoid) or type II corticosteroid (glucocorticoid) receptors blunts counterregulatory responses to subsequent hypoglycemia. Healthy volunteers participated in five randomized 2-day protocols. Day 1 involved morning and afternoon 2-h hyperinsulinemic (9 pmol.kg(-1).min(-1)) euglycemic clamps (PE; n = 14), hypoglycemic clamps (PH; n = 14), or euglycemic clamps with oral fludrocortisone (PE + F; type I agonist, 0.2 mg, n = 14), oral dexamethasone (PE + D; type II agonist, 0.75 mg, n = 13), or both (PE + F + D; n = 14). Day 2 was identical in all protocols and consisted of a 2-h hyperinsulinemic hypoglycemic clamp. Day 2 insulin (625 +/- 40 pmol/l) and glucose (2.9 +/- 0.1 mmol/l) levels were similar among groups. Levels of epinephrine, norepinephrine, glucagon, growth hormone, and MSNA were significantly blunted by prior activation of both type I and type II corticosteroid receptors to PE. Prior activation of both corticosteroid receptors also significantly blunted NEFA during subsequent hypoglycemia. Thus, levels of a wide spectrum of key counterregulatory mechanisms (neuroendocrine, ANS, and metabolic) were blunted by antecedent pharmacological stimulation of either type I or type II corticosteroid receptors in healthy man. These data suggest that activation of type I corticosteroid receptors in man can have acute and profound regulating effects on physiological stress in man. Both type I and type II corticosteroid receptors may be involved in the multiple mechanisms controlling counterregulatory responses to hypoglycemia in healthy man.  相似文献   

7.
The aim of this study was to determine whether activation of central type II glucocorticoid receptors can blunt autonomic nervous system counterregulatory responses to subsequent hypoglycemia. Sixty conscious unrestrained Sprague-Dawley rats were studied during 2-day experiments. Day 1 consisted of either two episodes of clamped 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) hypoglycemia (2.8 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia (6.2 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia plus simultaneous lateral cerebroventricular infusion of saline (24 microl/h; n = 8), or hyperinsulinemic euglycemia plus either lateral cerebral ventricular infusion (n = 8; LV-DEX group), fourth cerebral ventricular (n = 10; 4V-DEX group), or peripheral (n = 10; P-DEX group) infusion of dexamethasone (5 microg/h), a specific type II glucocorticoid receptor analog. For all groups, day 2 consisted of a 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) or hypoglycemic (2.9 +/- 0.2 mM) clamp. The hypoglycemic group had blunted epinephrine, glucagon, and endogenous glucose production in response to subsequent hypoglycemia. Consequently, the glucose infusion rate to maintain the glucose levels was significantly greater in this group vs. all other groups. The LV-DEX group did not have blunted counterregulatory responses to subsequent hypoglycemia, but the P-DEX and 4V-DEX groups had significantly lower epinephrine and norepinephrine responses to hypoglycemia compared with all other groups. In summary, peripheral and fourth cerebral ventricular but not lateral cerebral ventricular infusion of dexamethasone led to significant blunting of autonomic counterregulatory responses to subsequent hypoglycemia. These data suggest that prior activation of type II glucocorticoid receptors within the hindbrain plays a major role in blunting autonomic nervous system counterregulatory responses to subsequent hypoglycemia in the conscious rat.  相似文献   

8.
Studies concerning the importance of glucagon secretion in hypoglycemic counterregulation have assumed that peripheral levels of glucagon are representative of rates of pancreatic glucagon secretion. The measurement of peripheral levels of this hormone, however, may be a poor reflection of secretion rates because of glucagon's metabolism by the liver. Therefore, in order to understand the relationship between pancreatic glucagon secretion and levels of glucagon in the peripheral blood during hypoglycemia, we evaluated hepatic glucagon metabolism during insulin induced hypoglycemia. Four dogs received an insulin infusion to produce glucose levels less than 50 mg/dl for 45 minutes. In response to this, the delivery of glucagon to the liver increased from 36.7 +/- 5.9 ng/min in the baseline to 322.6 +/- 6.3 ng/min during hypoglycemia. Hepatic glucagon uptake increased proportionally from 13.6 +/- 7.2 ng/min to 103.1 +/- 28.3 ng/min and the percentage of delivered hormone that was extracted did not change (30.8 +/- 13.8% vs 32.9 +/- 11.6%). The absolute amount of glucagon metabolized by the liver was dependent on the rate of delivery and was not directly affected by plasma glucose level per se. To directly study the effect of hypoglycemia on hepatic glucagon metabolism, five dogs were given an exogenous infusion of somatostatin followed by an infusion of glucagon and then administered insulin to produce hypoglycemia. The percent of glucagon extracted by the liver (19.5 +/- 4.9% and 21.3 +/- 6.4%) was not affected by a fall in the plasma glucose level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This study aimed to differentiate the effects of repeated antecedent hypoglycemia, antecedent marked hyperinsulinemia, and antecedent increases in corticosterone on counterregulation to subsequent hypoglycemia in normal rats. Specifically, we examined whether exposure to hyperinsulinemia or elevated corticosterone per se could impair subsequent counterregulation. Four groups of male Sprague-Dawley rats were used: 1) normal controls (N) had 4 days of sham antecedent treatment; 2) an antecedent hypoglycemia group (AH) had 7 episodes of hyperinsulinemic hypoglycemia over 4 days; 3) an antecedent hyperinsulinemia group (AE) had 7 episodes of hyperinsulinemic euglycemia; and 4) an antecedent corticosterone group (AC) had 7 episodes of intravenous corticosterone to simulate the hypoglycemic corticosterone levels in AH rats. On day 5, hyperinsulinemic euglycemic-hypoglycemic clamps were performed. Epinephrine responses to hypoglycemia were impaired (P < 0.05 vs. N) after antecedent hypoglycemia and hyperinsulinemia. This correlated with diminished (P < 0.05 vs. N) absolute glucose production responses in AH rats and diminished incremental glucose production responses in AE rats. Paradoxically, norepinephrine responses were increased (P < 0.05 vs. N) after antecedent hypoglycemia. Glucagon and corticosterone responses were unaffected by antecedent hypoglycemia and hyperinsulinemia. In AC rats, incremental but not absolute glucose production responses were decreased (P < 0.05 vs. N). However, neuroendocrine counterregulation was unaltered. We conclude that both antecedent hypoglycemia and hyperinsulinemia impair epinephrine and glucose production responses to subsequent hypoglycemia, suggesting that severe recurrent hyperinsulinemia may contribute to the development of hypoglycemia-associated autonomic failure.  相似文献   

10.
Exercise-induced hypoglycemia can occur within hours after exercise in type 1 diabetes mellitus (T1DM) patients. This study tested the hypothesis that an acute exercise bout causes (within hours) blunted autonomic and metabolic responses to subsequent hypoglycemia in patients with T1DM. Twelve T1DM patients (3 W/9 M) were studied during a single-step, 2-h hyperinsulinemic (572 +/- 4 pmol/l) hypoglycemic (2.8 +/- 0.1 mmol/l) clamp 2 h after either a hyperinsulinemic euglycemic (AM EUG) or hypoglycemic clamp (AM HYPO) or after sitting in a chair with basal insulin infusion (AM CON) or 90 min of moderate-intensity exercise (50% Vo(2 max), AM EX). Both AM HYPO and AM EX significantly blunted epinephrine responses and muscle sympathetic nerve activity responses to subsequent hypoglycemia compared with both control groups. Endogenous glucose production was significantly lower and the exogenous glucose infusion rate needed to maintain the hypoglycemic level was significantly greater during subsequent hypoglycemia in AM EX vs. CON. Rate of glucose disposal (Rd) was significantly reduced following AM HYPO. In summary, within 2.5 h, both moderate-intensity AM EX and AM HYPO blunted key autonomic counterregulatory responses. Despite this, glucose Rd was reduced during afternoon hypoglycemia following morning hypoglycemia, indicating posthypoglycemic insulin resistance. After morning exercise, endogenous glucose production was blunted, but glucose Rd was maintained during afternoon hypoglycemia, thereby indicating reduced metabolic defenses against hypoglycemia. These data suggest that exercise-induced counterregulatory failure can occur very rapidly, increasing the risk for hypoglycemia in T1DM within hours.  相似文献   

11.
We tested the hypothesis that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia. Twelve healthy young adults were studied on two separate occasions, once after infusions of a pharmacological dose of alpha-(1-24)-ACTH (100 microg/h) from 0930 to 1200 and 1330 to 1600, which raised plasma cortisol levels to approximately 45 microg/dl on day 1, and once after saline infusions on day 1. Hyperinsulinemic (2.0 mU x kg(-1) x min(-1)) stepped hypoglycemic clamps (90, 75, 65, 55, and 45 mg/dl glucose steps) were performed on the morning of day 2 on both occasions. These markedly elevated antecedent endogenous cortisol levels reduced the adrenomedullary (P = 0.004, final plasma epinephrine levels of 489 +/-64 vs. 816 +/-113 pg/ml), sympathetic neural (P = 0.0022, final plasma norepinephrine levels of 244 +/-15 vs. 342 +/-22 pg/ml), parasympathetic neural (P = 0.0434, final plasma pancreatic polypeptide levels of 312 +/- 37 vs. 424 +/- 56 pg/ml), and neurogenic (autonomic) symptom (P = 0.0097, final symptom score of 7.1 +/-1.5 vs. 10.6 +/- 1.6) responses to subsequent hypoglycemia. Growth hormone, but not glucagon or cortisol, responses were also reduced. The findings that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia are potentially relevant to cortisol mediation of hypoglycemia-associated autonomic failure, and thus a vicious cycle of recurrent iatrogenic hypoglycemia, in people with diabetes mellitus.  相似文献   

12.
Hypoglycemia or glucoprivation triggers protective hormonal counterregulatory and feeding responses to aid the restoration of normoglycemia. Increasing evidence suggests pertinent roles for the brain in sensing glucoprivation and mediating counterregulation, however, the precise nature of the metabolic signals and molecular mediators linking central glucose sensing to effector functions are not fully understood. Here, we demonstrate that protective hormonal and feeding responses to hypoglycemia are regulated by BAD, a BCL-2 family protein with dual functions in apoptosis and metabolism. BAD-deficient mice display impaired glycemic and hormonal counterregulatory responses to systemic glucoprivation induced by 2-deoxy-D-glucose. BAD is also required for proper counterregulatory responses to insulin-induced hypoglycemia as evident from significantly higher glucose infusion rates and lower plasma epinephrine levels during hyperinsulinemic hypoglycemic clamps. Importantly, RNA interference-mediated acute knockdown of Bad in the brain provided independent genetic evidence for its relevance in central glucose sensing and proper neurohumoral responses to glucoprivation. Moreover, BAD deficiency is associated with impaired glucoprivic feeding, suggesting that its role in adaptive responses to hypoglycemia extends beyond hormonal responses to regulation of feeding behavior. Together, these data indicate a previously unappreciated role for BAD in the control of central glucose sensing.  相似文献   

13.
It has been demonstrated in the conscious dog that portal glucose infusion creates a signal that increases net hepatic glucose uptake and hepatic glycogen deposition. Experiments leading to an understanding of the mechanism by which this change occurs will be facilitated if this finding can be reproduced in the rat. Rats weighing 275-300 g were implanted with four indwelling catheters (one in the portal vein, one in the left carotid artery, and two in the right jugular vein) that were externalized between the scapulae. The rats were studied in a conscious, unrestrained condition 7 days after surgery, following a 24-h fast. Each experiment consisted of a 30- to 60-min equilibration, a 30-min baseline, and a 120-min test period. In the test period, a pancreatic clamp was performed by using somatostatin, insulin, and glucagon. Glucose was given simultaneously either through the jugular vein to clamp the arterial blood level at 220 mg/dl (Pe low group) or at 250 mg/dl (Pe high group), or via the hepatic portal vein (Po group; 6 mg. kg(-1). min(-1)) and the jugular vein to clamp the arterial blood glucose level to 220 mg/dl. In the test period, the arterial plasma glucagon and insulin levels were not significantly different in the three groups (36 +/- 2, 33 +/- 2, and 30 +/- 2 pg/ml and 1.34 +/- 0.08, 1. 37 +/- 0.18, and 1.66 +/- 0.11 ng/ml in Po, Pe low, and Pe high groups, respectively). The arterial blood glucose levels during the test period were 224 +/- 4 mg/dl for Po, 220 +/- 3 for Pe low, and 255 +/- 2 for Pe high group. The liver glycogen content (micromol glucose/g liver) in the two Pe groups was not statistically different (51 +/- 7 and 65 +/- 8, respectively), whereas the glycogen level in the Po group was significantly greater (93 +/- 9, P < 0.05). Because portal glucose delivery also augments hepatic glycogen deposition in the rat, as it does in the dogs, mechanistic studies relating to its function can now be undertaken in this species.  相似文献   

14.
Type 2 corticotropin-releasing factor (CRF) receptors (CRFR2) within the ventromedial hypothalamus (VMH), a key glucose-sensing region, play a major role in regulating the hormonal counterregulatory responses (CRRs) to acute hypoglycemia. The VMH expresses both subtypes of CRF receptors, CRFR1 and CRFR2. The objective of this study was to examine the role of the CRFR1 receptor in the VMH in the regulation of the CRR to acute hypoglycemia. To compare the hormonal CRR to hypoglycemia, awake and unrestrained Sprague-Dawley rats were bilaterally microinjected to the VMH with either 1) aECF, 2) CRF (1 pmol/side), 3) CRFR1 antagonist Antalarmin (500 pmol/side), or 4) CRF + Antalarmin prior to undergoing a hyperinsulinemic hypoglycemic (2.8 mM) clamp. A second series of studies also incorporated an infusion of [(3)H]glucose to allow the calculation of glucose dynamics. In addition the effect of CRFR1 antagonism in the paraventricular nucleus (PVN) was studied. Activation of VMH CRFR1 increased, whereas inhibition of CRFR1 suppressed hypoglycemia-induced CRRs. Inhibition of VMH CRFR1 also increased peripheral glucose utilization and reduced endogenous glucose production during hypoglycemia, whereas VMH CRF reduced peripheral glucose utilization. In contrast CRFR1 inhibition in the PVN blunted corticosterone but not epinephrine or glucagon CRR to hypoglycemia. In contrast to CRFR2 activation, CRFR1 activation within the VMH amplifies CRRs to acute hypoglycemia. The balance between these two opposing CRFRs in this key glucose-sensing region may play an important role in determining the magnitude of CRRs to acute hypoglycemia.  相似文献   

15.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

16.
Neonatal deaths are a serious problem in breeding colonies of squirrel monkeys. Seriously ill neonates in our colony are always hypoglycemic on presentation. To determine normal glucose values for squirrel monkey infants of various ages, serum glucose determinations were done at 1, 3, 7, 10, 14 days and 1 month of age using a standard laboratory test for serum glucose. Glucose concentration increased from a low of 49 +/- 3 mg/dl (Mean +/- SEM) at 1 day (n = 21) to 109 +/- 4 mg/dl at 1 month of age (n = 17). Glucose values for 1, 3 and 7 day-old infants were significantly lower than 1 month-old infants (P less than .05). To provide a time-averaged indication of blood glucose, glycosylated hemoglobin (GHb) measurements were made at 1 day, 1 week, 2 weeks, 1 month, 2 months, 1 year of age and in adults (greater than 3 years of age). GHb values ranged from 2.6% +/- 0.1 for 1 day old infants (n = 13) to 4.0 +/- 0.2 for adults (n = 10) with a steady increase during the first 2 months of life. Animals 1 year of age and younger had significantly lower glycosylated hemoglobin than adults. These studies indicate that blood glucose concentration is significantly lower in squirrel monkey neonates than in older infants, juveniles and adults. Maternal rejection, trauma, and associated problems occur commonly in socially reared squirrel monkeys. The marginal hypoglycemic state of these infants places them at high risk for clinical hypoglycemia as a sequel to such perturbations.  相似文献   

17.
To understand the mechanisms whereby recurrent hypoglycemia increases the risk of subsequent hypoglycemia, it was necessary to differentiate the effects of recurrent hyperinsulinemia from those of hyperinsulinemic hypoglycemia. We examined basal and hypoglycemic endocrine function in normal rats, streptozotocin-diabetic controls, and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (DH) or hyperinsulinemic hyperglycemia (DI). DH and DI rats differentiated the effects of hyperinsulinemia from those of hypoglycemia. In diabetic controls, basal plasma ACTH tended to be increased, and plasma corticosterone, plasma somatostatin, and pancreatic prosomatostatin and proglucagon mRNA were increased (P < 0.05) vs. normal rats. These parameters were normalized in DH and DI rats. In diabetic controls, glucagon, epinephrine, norepinephrine, corticosterone, and peak glucose production responses to hypoglycemia were reduced (P < 0.05) vs. normal rats. In DI rats, epinephrine responses were normalized. Conversely, DH rats displayed marked further impairment of epinephrine and glucose production responses and increased peripheral insulin sensitivity (P < 0.05 vs. diabetic controls). Both insulin regimens partially normalized glucagon and fully normalized norepinephrine and corticosterone responses. In summary, recurrent hyperinsulinemia in diabetic rats normalized most pituitary-adrenal, sympathoadrenal, and pancreatic parameters. However, concurrent hypoglycemia further impaired epinephrine and glucose production responses and increased insulin sensitivity. We conclude that 1) recurrent hypoglycemia may increase the risk of subsequent hypoglycemia by increasing insulin sensitivity, and 2) epinephrine counterregulation is particularly sensitive to impairment by recurrent hypoglycemia.  相似文献   

18.
Euglycemic-hyperinsulinemic clamps were performed on six healthy untrained individuals to determine whether exercise that induces muscle damage also results in insulin resistance. Clamps were performed 48 h after bouts of predominantly 1) eccentric exercise [30 min, downhill running, -17% grade, 60 +/- 2% maximal O2 consumption (VO2max)], 2) concentric exercise (30 min, cycle ergometry, 60 +/- 2% VO2max), or 3) without prior exercise. During the clamps, euglycemia was maintained at 90 mg/dl while insulin was infused at 30 mU.m-2.min-1 for 120 min. Hepatic glucose output (HGO) was determined using [6,6-2H]glucose. Eccentric exercise caused marked muscle soreness and significantly elevated creatine kinase levels (273 +/- 73, 92 +/- 27, 87 +/- 25 IU/l for the eccentric, concentric, and control conditions, respectively) 48 h after exercise. Insulin-mediated glucose disposal rate was significantly impaired (P less than 0.05) during the clamp performed after eccentric exercise (3.47 +/- 0.51 mg.kg-1.min-1) compared with the clamps performed after concentric exercise (5.55 +/- 0.94 mg.kg-1.min-1) or control conditions (5.48 +/- 1.0 mg.kg-1.min-1). HGO was not significantly different among conditions (0.77 +/- 0.26, 0.65 +/- 0.27, and 0.66 +/- 0.64 mg.kg-1.min-1 for the eccentric, concentric, and control clamps, respectively). The insulin resistance observed after eccentric exercise could not be attributed to altered plasma cortisol, glucagon, or catecholamine concentrations. Likewise, no differences were observed in serum free fatty acids, glycerol, lactate, beta-hydroxybutyrate, or alanine. These results show that exercise that results in muscle damage, as reflected in muscle soreness and enzyme leakage, is followed by a period of insulin resistance.  相似文献   

19.
Our aim was to determine whether complete hepatic denervation would affect the hormonal response to insulin-induced hypoglycemia in dogs. Two weeks before study, dogs underwent either hepatic denervation (DN) or sham denervation (CONT). In addition, all dogs had hollow steel coils placed around their vagus nerves. The CONT dogs were used for a single study in which their coils were perfused with 37 degrees C ethanol. The DN dogs were used for two studies in a random manner, one in which their coils were perfused with -20 degrees C ethanol (DN + COOL) and one in which they were perfused with 37 degrees C ethanol (DN). Insulin was infused to create hypoglycemia (51 +/- 3 mg/dl). In response to hypoglycemia in CONT, glucagon, cortisol, epinephrine, norepinephrine, pancreatic polypeptide, glycerol, and hepatic glucose production increased significantly. DN alone had no inhibitory effect on any hormonal or metabolic counterregulatory response to hypoglycemia. Likewise, DN in combination with vagal cooling also had no inhibitory effect on any counterregulatory response except to reduce the arterial plasma pancreatic polypeptide response. These data suggest that afferent signaling from the liver is not required for the normal counterregulatory response to insulin-induced hypoglycemia.  相似文献   

20.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号