首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is inducible by inflammatory conditions, which cause oxidative stress in endothelial cells. Overexpression of human HO-1 in endothelial cells may have the potential to provide protection against a variety of agents that cause oxidative stress. We investigated the physiological significance of human HO-1 overexpression using a retroviral vector on attenuation of angiotensin II (Ang II)-mediated oxidative stress. Comet and glutathione (GSH) levels were used as indicators of the levels of oxidative stress. Comet assay was performed to evaluate damage on DNA, whereas GSH levels were measured to determine the unbalance of redox potential. Pretreatments with inducers, such as heme 10 microM, SnCl(2) 10 microM, and inhibitors, such as tin-mesoporphyrin 10 microM was followed by treatment with Ang II 200 ng/ml. Pretreatment with heme or SnCl(2) provoked significant reductions (P < 0.01) of tail moment in the comet assay. Opposite effects were evident by pretreatment for 16 hr with tin-mesoporphyrin. A decrease in tail moment levels was found in human endothelial cells transduced with the human HO-1 gene. The addition of Ang II (200 ng/ml) to human dermal microvessel endothelial cell-1 for 16 hr resulted in a significant (P < 0.05) reduction of GSH contents control endothelial cells but not in endothelial cells transduced with HO-1 gene. The results presented indicated that stimulation or overexpression of HO-1 attenuated DNA damages caused by exposures of Ang II.  相似文献   

2.
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is inducible by inflammatory conditions, which cause oxidative stress in endothelial cells. Overexpression of human HO-1 in endothelial cells may have the potential to provide protection against a variety of agents that cause oxidative stress. We investigated the physiological significance of human HO-1 overexpression, using a retroviral vector, on cell cycle progression in the presence and absence of pyrrolidine dithiocarbamate (PDTC). The addition of PDTC (25 and 50 microM) to human microvessel endothelial cells over 24 h resulted in significant (P < 0.05) abnormalities in DNA distribution and cell cycle progression compared to cells overexpressing the HO-1 gene. The addition of PDTC resulted in a significantly decreased G(1) phase and an increased G(2)/M phase in the control cells, but not in cells transduced with the human HO-1 gene (P < 0.05). Further, PDTC had a potent effect on DNA distribution abnormalities in exponentially grown cells compared to subconfluent cells. Upregulation of HO activity in endothelial cells, as a result of overexpressing human HO-1, prevented PDTC-mediated abnormalities in DNA distribution. Inhibition of HO activity by tin-mesoporphyrin (SnMP) (30 microM) resulted in enhancement of PDTC-mediated abnormalities in cell cycle progression. Bilirubin or iron did not mediate DNA distribution. We conclude that an increase in endothelial cell HO-1 activity with subsequent generation of carbon monoxide, elicited by gene transfer, reversed the PDTC-mediated abnormalities in cell cycle progression and is thus a potential therapeutic means for attenuating the effects of oxidative stress-causing agents.  相似文献   

3.
4.
Several lines of evidence suggest that antioxidant processes and (or) endogenous antioxidants inhibit proatherogenic events in the blood vessel wall. Heme oxygenase (HO), which catabolizes heme to biliverdin, carbon monoxide, and catalytic iron, has been shown to have such antioxidative properties. The HO-1 isoform of heme oxygenase is ubiquitous and can be increased several fold by stimuli that induce cellular oxidative stress. Products of the HO reaction have important effects: carbon monoxide is a potent vasodilator, which is thought to play a role in modulation of vascular tone; biliverdin and its by-product bilirubin are potent antioxidants. Although HO induction results in an increase in catalytic free iron release, the enhancement of intracellular ferritin protein through HO-1 has been reported to decrease the cytotoxic effects of iron. Oxidized LDL has been shown to increase HO-1 expression in endothelial and smooth muscle cell cultures, and during atherogenesis. Further evidence of HO-1 expression associated with atherogenesis has been demonstrated in human, murine and rabbit atherosclerotic lesions. Moreover, genetic models of HO deficiency suggest that the actions of HO-1 are important in modulating the severity of atherosclerosis. Recent experiments in gene therapy using the HO gene suggest that interventions aimed at HO in the vessel wall could provide a novel therapeutic approach for the treatment or prevention of atherosclerotic disease.  相似文献   

5.
Heme oxygenase (HO)-1 represents a key defense mechanism against oxidative injury. Hyperglycemia produces oxidative stress and various perturbations of cell physiology. The effect of streptozotocin (STZ)-induced diabetes on aortic HO activity, heme content, the number of circulating endothelial cells, and urinary 8-epi-isoprostane PGF2alpha (8-Epi) levels in control rats and rats overexpressing or underexpressing HO-1 was measured. HO activity was decreased in hyperglycemic rats. Hyperglycemia increased urinary 8-Epi, and this increase was augmented in rats underexpressing HO-1 and diminished in rats overexpressing HO-1. The number of detached endothelial cells and O2- formation increased in diabetic rats and in hyperglycemic animals underexpressing HO-1 and decreased in diabetic animals overexpressing HO-1 compared with controls. These data demonstrate that HO-1 gene transfer in hyperglycemic rats brings about a reduction in O2- production and a decrease in endothelial cell sloughing. Upregulation of HO-1 decreases oxidant production and endothelial cell damage and shedding and may attenuate vascular complications in diabetes.  相似文献   

6.
7.
There has been increasing evidence suggesting the potent anti-inflammatory roles of heme oxygenase-1 (HO-1) in protecting renal tubular epithelial cells, vascular endothelial cells, and circulating monocytes. Based on these findings, novel therapeutic interventions have been proposed to control the expression of endothelial HO-1 levels to ameliorate various vascular diseases. We evaluated the effect of HO-1 gene transfer into an anchorage-dependent cell, ECV304. Effect of HO-1 production on the cell injury induced by hydrogen peroxide was evaluated after hemin stimulation and after HO-1 gene transfection. Morphological changes and the induction of various anti-apoptotic proteins were examined at the same time. Levels of HO-1 expression were variable in different clones of HO-1-transfected ECV304 cells. Among these, the clones with moderate levels of HO-1 expression were significantly more resistant to oxidative stress. In contrast, those with the highest levels of HO-1 exhibited paradoxically enhanced susceptibility to oxidative injury. Interestingly, the cell survival after oxidative stress was in parallel with the levels of Bcl-2 expression and of fibronectin receptor, alpha5 integrin. It is suggested from these results, that excessive HO-1 not only leads to enhanced cell injury, but also prolongs the repair process of the injured endothelial tissue. However, HO-1 reduces the oxidative cell injury and protects the endothelial cells, if its expression is appropriately controlled. Copyright 2004 Wiley-Liss, Inc.  相似文献   

8.
Hyperglycaemia is associated with oxidative stress. The inducible isoform of heme oxygenase (HO-1) is an effective system to counteract oxidative stress, yet it is unclear how hyperglycaemia affects HO-1. In this study, we explored: 1) the HO-1 protein content and HO activity in human umbilical vein endothelial cells (HUVECs) exposed to different glucose concentrations, and 2) the mechanisms which account for the high glucose-induced effects on HO-1. We evaluated HO-1 protein expression, HO activity, apoptosis and reactive oxygen species (ROS) in HUVECs treated for 48 h with 5.5, 10 and 20 mM glucose. A dose-dependent production of reactive oxygen species was observed. At 10 mM glucose, an increase of HO-1 protein expression and HO activity was observed, whereas at 20 mM, there was no change in protein content and activity relative to at 5.5 mM glucose. HO-1 protein expression in HUVECs exposed to 20 mM of glucose was increased in the presence of 20 U/ml superoxide dismutase (SOD). HO-1 gene silencing augments ROS production both at 5.5 and 10 mM glucose, leading to an increased apoptosis. We conclude that, in endothelial cells, the regulation of HO-1 by glucose is dependent upon levels of glucose itself. Lack of homeostatic HO-1 upregulation fails to protect from oxidative damage and results in a higher rate of apoptotic cell death.  相似文献   

9.
Heme oxygenase and the cardiovascular-renal system   总被引:12,自引:0,他引:12  
Heme oxygenase (HO) has been shown to be important for attenuating the overall production of reactive oxygen species (ROS) through its ability to degrade heme and to produce carbon monoxide (CO), biliverdin/bilirubin, and the release of free iron. Excess free heme catalyzes the formation of ROS, which may lead to endothelial cell (EC) dysfunction as seen in numerous pathological conditions including hypertension and diabetes, as well as ischemia/reperfusion injury. The upregulation of HO-1 can be achieved through the use of pharmaceutical agents, such as metalloporphyrins and some HMG-CoA reductase inhibitors. Among other agents, atrial natriretic peptide and donors of nitric oxide (NO) are important modulators of the heme-HO system, either through induction of HO-1 or the biological activity of its products. Gene therapy and gene transfer, including site- and organ-specific targeted gene transfer, have become powerful tools for studying the potential role of HO-1/HO-2 in the treatment of various cardiovascular diseases as well as diabetes. HO-1 induction by pharmacological agents or gene transfer of human HO-1 into endothelial cells (ECs) in vitro increases cell-cycle progression and attenuates Ang II, TNF-, and heme-mediated DNA damage; administration in vivo acts to correct blood pressure elevation following Ang II exposure. Moreover, site-specific delivery of HO-1 to renal structures in spontaneously hypertensive rats (SHR), specifically to the medullary thick ascending limb of the loop of Henle (mTALH), has been shown to normalize blood pressure and provide protection to the mTAL against oxidative injury. In other cardiovascular situations, delivery of human HO-1 to hyperglycemic rats significantly lowers superoxide (O(2)(-)) levels and prevents EC damage and sloughing of vascular EC into the circulation. In addition, administration of human HO-1 to rats in advance of ischemia/reperfusion injury considerably reduces tissue damage. The ability to upregulate HO-1 through pharmacological means or through the use of gene therapy may offer therapeutic strategies for cardiovascular disease in the future. This review discusses the implications of HO-1 delivery during the early stages of cardiovascular system injury or in early vascular pathology and suggests that pharmacological agents that regulate HO activity or HO-1 gene delivery itself may become powerful tools for preventing the onset or progression of certain cardiovascular pathologies.  相似文献   

10.
In cerebral circulation, epileptic seizures associated with excessive release of the excitatory neurotransmitter glutamate cause endothelial injury. Heme oxygenase (HO), which metabolizes heme to a vasodilator, carbon monoxide (CO), and antioxidants, biliverdin/bilirubin, is highly expressed in cerebral microvessels as a constitutive isoform, HO-2, whereas the inducible form, HO-1, is not detectable. Using cerebral vascular endothelial cells from newborn pigs and HO-2-knockout mice, we addressed the hypotheses that 1) glutamate induces oxidative stress-related endothelial death by apoptosis, and 2) HO-1 and HO-2 are protective against glutamate cytotoxicity. In cerebral endothelial cells, glutamate (0.1–2.0 mM) increased formation of reactive oxygen species, including superoxide radicals, and induced major keystone events of apoptosis, such as NF-B nuclear translocation, caspase-3 activation, DNA fragmentation, and cell detachment. Glutamate-induced apoptosis was greatly exacerbated in HO-2 gene-deleted murine cerebrovascular endothelial cells and in porcine cells with pharmacologically inhibited HO-2 activity. Glutamate toxicity was prevented by superoxide dismutase, suggesting apoptotic changes are oxidative stress related. When HO-1 was pharmacologically upregulated by cobalt protoporphyrin, apoptotic effects of glutamate in cerebral endothelial cells were completely prevented. Glutamate-induced reactive oxygen species production and apoptosis were blocked by a CO-releasing compound, CORM-A1 (50 µM), and by bilirubin (1 µM), consistent with the antioxidant and cytoprotective roles of the end products of HO activity. We conclude that both HO-1 and HO-2 have anti-apoptotic effects against oxidative stress-related glutamate toxicity in cerebral vascular endothelium. Although HO-1, when induced, provides powerful protection, HO-2 is an essential endogenous anti-apoptotic factor against glutamate toxicity in the cerebral vascular endothelium. endothelium; carbon monoxide; bilirubin; injury; reactive oxygen species; heme oxygenase  相似文献   

11.
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2',7'-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H(2)O(2) and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H(2)O(2) and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.  相似文献   

12.
Beyond its vasodilator role, vascular nitric oxide (NO), which is synthesized by endothelial NO synthase (eNOS) via its activation, has been shown to play a number of other beneficial roles in the vascular system; it inhibits proliferation of vascular smooth muscle cells, prevents platelet aggregation, and regulates endothelial apoptosis. Such beneficial roles have been shown to be implicated in the regulation of endothelial functions. A loss of NO bioavailability that may result either from decreased eNOS expression and activity or from increased NO degradation is associated with endothelial dysfunction, a key factor in the development of vascular diseases. Heme oxygenase-1 (HO-1), an inducible enzyme, catalyzes the oxidative degradation of heme to free iron, carbon monoxide, and biliverdin, the latter being subsequently converted into bilirubin. In the vascular system, HO-1 and heme degradation products perform important physiological functions, which are ultimately linked to the protection of vascular cells. Studies have shown that HO-1 and heme degradation products exert vasodilatory, antioxidant, anti-inflammatory, antiproliferative and anti-apoptotic effects on vascular cells. Interestingly, these effects of HO-1 and its by-products are similar, at least in part, to those of eNOS-derived NO; this similarity may prompt investigators to study a possible relationship between eNOS-derived NO and HO-1 pathways. Many studies have been reported, and accumulating evidence suggests that HO-1 and heme degradation products can improve vascular function, at least in part, by compensating for the loss of NO bioavailability. This paper will provide the possible pathway explaining how HO-1 and heme degradation products can preserve vascular NO.  相似文献   

13.
Hypothermia for myocardial protection or storage of vascular grafts may damage the endothelium and impair vascular function upon reperfusion/rewarming. Catalytic iron pools and oxidative stress are important mediators of cold-induced endothelial injury. Because endothelial cells are highly adaptive, we hypothesized that hypothermic preconditioning (HPC) protects cells at 0°C by a heme oxygenase-1 (HO-1) and ferritin-dependent mechanism. Storage of human coronary artery endothelial cells at 0°C caused the release of lactate dehydrogenase, increases in bleomycin-detectible iron (BDI), and increases in the ratio of oxidized/reduced glutathione, signifying oxidative stress. Hypoxia increased injury at 0°C but did not increase BDI or oxidative stress further. HPC at 25°C for 15–72 h attenuated these changes by an amount achievable by pretreating cells with 10–20 μM deferoxamine, an iron chelator, and protected cell viability. Treating cells with hemin chloride at 37°C transiently increased intracellular heme, HO-1, BDI, and ferritin. Elevated heme/iron sensitized cells to 0°C but ferritin was protective. HPC increased iron maximally after 2 h at 25°C and ferritin levels peaked after 15 h. HO-1 was not induced. When HPC-mediated increases in ferritin were blocked by deferoxamine, protection at 0°C was diminished. We conclude that HPC-mediated endothelial protection from hypothermic injury is an iron- and ferritin-dependent process.  相似文献   

14.
15.
16.
Heme oxygenase is the rate limiting enzyme in heme degradation to carbon monoxide (CO), iron and bilirubin. The inducible isoform of the protein, heme oxygenase-1 (HO-1), is susceptible to up-regulation by a diverse variety of conditions and agents in mammalian tissue, leading to the common conception that HO-1 is a stress related enzyme. However, as attempts are made to unravel the mechanisms by which HO-1 is induced and as we discover that CO, iron and bilirubin may be important effector molecules, we are learning to appreciate that heme oxygenases may be central to the regulation of many physiological and pathophysiological processes besides their established function in heme catabolism. One such process may be closely linked to nitric oxide (NO). It has been demonstrated that NO and NO donors are capable of inducing HO-1 protein expression, in a mechanism depending on the de novo synthesis of RNA and protein. Thus, it is postulated that NO may serve as a signaling molecule in the modulation of the tissue stress response. This review will highlight the current ideas on the role of CO-heme oxygenase and NO-nitric oxide synthase in cell signaling and discuss how the two systems are interrelated.  相似文献   

17.
Heme oxygenase is the rate limiting enzyme in heme degradation to carbon monoxide (CO), iron and bilirubin. The inducible isoform of the protein, heme oxygenase-1 (HO-1), is susceptible to up-regulation by a diverse variety of conditions and agents in mammalian tissue, leading to the common conception that HO-1 is a stress related enzyme. However, as attempts are made to unravel the mechanisms by which HO-1 is induced and as we discover that CO, iron and bilirubin may be important effector molecules, we are learning to appreciate that heme oxygenases may be central to the regulation of many physiological and pathophysiological processes besides their established function in heme catabolism. One such process may be closely linked to nitric oxide (NO). It has been demonstrated that NO and NO donors are capable of inducing HO-1 protein expression, in a mechanism depending on the de novo synthesis of RNA and protein. Thus, it is postulated that NO may serve as a signaling molecule in the modulation of the tissue stress response. This review will highlight the current ideas on the role of CO-heme oxygenase and NO-nitric oxide synthase in cell signaling and discuss how the two systems are interrelated.  相似文献   

18.
Oxidative stress and increased oxidation of low-density lipoprotein (oxLDL) through free radical-mediated tissue injury may be important factors in the development of extracranial atherosclerotic lesions. However, the roles of oxidative stress and hypercholesterolemia in intracranial atherosclerosis is less established. The induction of heme oxygenase (HO) is a cellular response to oxidative stress, and inducible HO (HO-1) may protect against oxidized lipids such as those produced by oxidative stress. We investigated the effects of oxLDL on cell and tissue viability, HO-1 and ferritin expression in extracranial and intracranial endothelial cells, and the arteries of cholesterol-induced atherosclerosis (CIA) Japanese quail. We report that cultured microvascular endothelial cells from the brain (QBMEC) and carotid (QCEC) differ in their response to oxidative stress. The QCECs are less responsive than QBMECs to oxidative stress induced by oxLDL, as evident by lower expression of HO-1 mRNA, HO activity, and ferritin levels. Furthermore, the higher levels of catalytic iron, thiobarbituric acid reactive substances, and lactate dehydrogenase released in QCECs indicated that these cells are more susceptible to oxidative stress than QBMECs. We also investigated the relationship between extent of atherosclerotic plaque deposition and the extracranial and intracranial arterial expression of HO-1 in quail. The common carotid and vertebral (extracranial) arteries had higher tissue cholesterol levels (starting at 2 weeks of cholesterol-supplementation) and a greater atherosclerotic plaque score (starting at 4 weeks of cholesterol-supplementation) compared with middle cerebral and basilar (intracranial) arteries, and this may be relevant to the effect of aging on the process of atherogenesis. The extracranial arteries also had early and greater levels of lipid peroxidation and catalytic iron coupled with lower expression of HO-1 protein, HO activity, and ferritin compared to the intracranial vessels. These observations suggest that the extracranial and intracranial arterial walls respond differently to oxidation of lipoproteins, and support the feasibility of increased HO-1 expression as a means of protection against oxidant injury.  相似文献   

19.
Curcumin, a widely used spice and coloring agent in food, has been shown to possess potent antioxidant, antitumor promoting and anti-inflammatory properties in vitro and in vivo. The mechanism(s) of such pleiotropic action by this yellow pigment is unknown; whether induction of distinct antioxidant genes contributes to the beneficial activities mediated by curcumin remains to be investigated. In the present study we examined the effect of curcumin on endothelial heme oxygenase-1 (HO-1 or HSP32), an inducible stress protein that degrades heme to the vasoactive molecule carbon monoxide and the antioxidant biliverdin. Exposure of bovine aortic endothelial cells to curcumin (5-15 microM) resulted in both a concentration- and time-dependent increase in HO-1 mRNA, protein expression and heme oxygenase activity. Hypoxia (18 h) also caused a significant (P < 0.05) increase in heme oxygenase activity which was markedly potentiated by the presence of low concentrations of curcumin (5 microM). Interestingly, prolonged incubation (18 h) with curcumin in normoxic or hypoxic conditions resulted in enhanced cellular resistance to oxidative damage; this cytoprotective effect was considerably attenuated by tin protoporphyrin IX, an inhibitor of heme oxygenase activity. In contrast, exposure of cells to curcumin for a period of time insufficient to up-regulate HO-1 (1.5 h) did not prevent oxidant-mediated injury. These data indicate that curcumin is a potent inducer of HO-1 in vascular endothelial cells and that increased heme oxygenase activity is an important component in curcumin-mediated cytoprotection against oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号