首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In culture, the filamentous fungus Cochliobolus carbonum, a pathogen of maize, makes three cationic xylanases, XYL1, which encodes the major endoxylanase (Xyl1), was earlier cloned and shown by gene disruption to encode the first and second peaks of xylanase activity (P. C. Apel, D. G. Panaccione, F. R. Holden, and J. D. Walton, Mol. Plant-Microbe Interact. 6:467-473, 1993). Two additional xylanase genes, XYL2 and XYL3, have now been cloned from C. carbonum. XYL2 and XYL3 are predicted to encode 22-kDa family G xylanases similar to Xyl1. Xyl2 and Xyl3 are 60% and 42% identical, respectively, to Xyl1, and Xyl2 and Xyl3 are 39% identical. XYL1 and XYL2 but not XYL3 mRNAs are present in C. carbonum grown in culture, and XYL1 and XYL3 but not XYL2 mRNAs are present in infected plants. Transformation-mediated gene disruption was used to construct strains mutated in XYL1, XYL2, and XYL3. Xyl1 accounts for most of the total xylanase activity in culture, and disruption of XYL2 or XYL3 does not result in the further loss of any xylanase activity. In particular, the third peak of cationic xylanase activity is still present in a xyl1 xyl2 xyl3 triple mutant, and therefore this xylanase must be encoded by yet a fourth xylanase gene. A minor protein of 22 kDa that can be detected immunologically in the xyl1 mutant disappears in the xyl2 mutant and is therefore proposed to be the product of XYL2. The single xylanase mutants were crossed with each other to obtain multiple xylanase disruptions within the same strain. Strains disrupted in combinations of two and in all three xylanases were obtained. The triple mutant grows at the same rate as the wild type on xylan and on maize cell walls. The triple mutant is still fully pathogenic on maize with regard to lesion size, morphology, and rate of lesion development.  相似文献   

3.
4.
A new cellulase gene, cel2, from the filamentous fungus Cochliobolus carbonum was cloned by using egl-1 of Trichoderma reesei as a heterologous probe. DNA blot analysis of cel2 showed that this gene is present as a single copy. The gene contains one 49-bp- intron. cel2 encodes a predicted protein (Cel2p) of 423 amino acids with a molecular mass of 45.8 kDa. The predicted pI is 4.96. It shows similarity to other endoglucanases from various fungi. From the comparison with other cellulase genes, cel2 belongs to family 7 of glucohydrolases. cel2 is located on a 2.5-Mb chromosome in C. carbonum and its expression is repressed by sucrose. A cel2 mutant of C. carbonum was created by transformation-mediated gene disruption. The pathogenicity of the mutant was indistinguishable from the wild type, indicating that cel2 by itself is not important for pathogenicity.  相似文献   

5.
A new cellulase gene, cel2, from the filamentous fungus Cochliobolus carbonum was cloned by using egl-1 of Trichoderma reesei as a heterologous probe. DNA blot analysis of cel2 showed that this gene is present as a single copy. The gene contains one 49-bp- intron. cel2 encodes a predicted protein (Cel2p) of 423 amino acids with a molecular mass of 45.8 kDa. The predicted pI is 4.96. It shows similarity to other endoglucanases from various fungi. From the comparison with other cellulase genes, cel2 belongs to family 7 of glucohydrolases. cel2 is located on a 2.5-Mb chromosome in C. carbonum and its expression is repressed by sucrose. A cel2 mutant of C. carbonum was created by transformation-mediated gene disruption. The pathogenicity of the mutant was indistinguishable from the wild type, indicating that cel2 by itself is not important for pathogenicity.  相似文献   

6.
The production of cell wall-degrading enzymes (wall depolymerases) by plant pathogenic fungi is under catabolite (glucose) repression. In Saccharomyces cerevisiae, the SNF1 gene is required for expression of catabolite-repressed genes when glucose is limiting. An ortholog of SNF1, ccSNF1, was isolated from the maize pathogen Cochliobolus carbonum, and ccsnf1 mutants of HC toxin-producing (Tox2(+)) and HC toxin-nonproducing (Tox2(-)) strains were created by targeted gene replacement. Growth in vitro of the ccsnf1 mutants was reduced by 50 to 95% on complex carbon sources such as xylan, pectin, or purified maize cell walls. Growth on simple sugars was affected, depending on the sugar. Whereas growth on glucose, fructose, or sucrose was normal, growth on galactose, galacturonic acid, maltose, or xylose was somewhat reduced, and growth on arabinose was strongly reduced. Production of HC toxin was normal in the Tox2(+) ccsnf1 mutant, as were conidiation, conidial morphology, conidial germination, and in vitro appressorium formation. Activities of secreted beta-1,3-glucanase, pectinase, and xylanase in culture filtrates of the Tox2(+) ccsnf1 mutant were reduced by 53, 24, and 65%, respectively. mRNA expression was downregulated under conditions that induced the following genes encoding secreted wall-degrading enzymes: XYL1, XYL2, XYL3, XYL4, XYP1, ARF1, MLG1, EXG1, PGN1, and PGX1. The Tox2(+) ccsnf1 mutant was much less virulent on susceptible maize, forming fewer spreading lesions; however, the morphology of the lesions was unchanged. The Tox2(-) ccsnf1 mutant also formed fewer nonspreading lesions, which also retained their normal morphology. The results indicate that ccSNF1 is required for biochemical processes important in pathogenesis by C. carbonum and suggest that penetration is the single most important step at which ccSNF1 is required. The specific biochemical processes controlled by ccSNF1 probably include, but are not necessarily restricted to, the ability to degrade polymers of the plant cell wall and to take up and metabolize the sugars produced.  相似文献   

7.
The filamentous fungus Fusarium oxysporum causes vascular wilt on a wide range of plant species and is an emerging pathogen of humans. A mitogen-activated protein kinase, Fmk1, and a G protein beta subunit, Fgb1, control pathogenicity of F. oxysporum on plants through distinct signalling pathways. In the present report, we studied the genetic interaction between fmk1 and fgb1 and their role in virulence on a mammalian host. The delta fmk1 or delta fgb1 single mutants exhibited similar virulence patterns as the wild type strain in an immunodepressed mouse model. By contrast, double mutants lacking both genes had dramatically reduced virulence. All mutants showed similar in vitro growth or tolerance to temperature and osmotic stress as the wild type strain. However, the delta fgb1 and delta fmk1 strains were reduced in specific extracellular protease activity or adhesion to fibronectin, respectively, two factors previously associated with fungal virulence. Thus, Fmk1 and Fgb1 are components of distinct signalling pathways which collectively control virulence of F. oxysporum on mammalian hosts.  相似文献   

8.
HC-toxin   总被引:3,自引:0,他引:3  
Walton JD 《Phytochemistry》2006,67(14):1406-1413
  相似文献   

9.
10.
11.
We have partially purified and characterized histone deacetylases of the plant pathogenic fungus Cochliobolus carbonum. Depending on growth conditions, this fungus produces HC-toxin, a specific histone deacetylase inhibitor. Purified enzymes were analyzed by immunoblotting, by immunoprecipitation, and for toxin sensitivity. The results demonstrate the existence of at least two distinct histone deacetylase activities. A high molecular weight complex (430,000) is sensitive to HC-toxin and trichostatin A and shows immunoreactivity with an antibody against Cochliobolus HDC2, an enzyme homologous to yeast RPD3. The second activity, a 60,000 molecular weight protein, which is resistant even to high concentrations of well-known deacetylase inhibitors, such as HC-toxin and trichostatin A, is not recognized by antibodies against Cochliobolus HDC1 (homologous to yeast HOS2) or HDC2 and represents a different and/or modified histone deacetylase which is enzymatically active in its monomeric form. This enzyme activity is not present in the related filamentous fungus Aspergillus nidulans. Furthermore, in vivo treatment of Cochliobolus mycelia with trichostatin A and analysis of HDACs during the transition from non-toxin-producing to toxin-producing stages support an HC-toxin-dependent enzyme activity profile.  相似文献   

12.
L. Giasson  J. W. Kronstad 《Genetics》1995,141(2):491-501
Mating between haploid, budding cells of the dimorphic fungus Ustilago maydis results in the formation of a dikaryotic, filamentous cell type. Mating compatibility is governed by two mating-type loci called a and b; transformation of genes from these loci (e.g., a1 and b1) into a haploid strain of different mating type (e.g., a2 b2) allows filamentous growth and establishes a pathogenic cell type. Several mutants with a nonmycelial colony morphology were isolated after insertional mutagenesis of a filamentous, pathogenic haploid strain. The mutagenized region in one such mutant was recovered by plasmid rescue and employed to isolate a gene involved in conditioning the mycelial phenotype (myp1). An 1150 amino acid open reading frame is present at the myp1 locus; the predicted polypeptide is rich in serine residues and contains short regions with similarity to SH3 domain ligands. Construction of myp1 disruption and deletion mutants in haploid strains confirmed that this gene plays a role in mycelial growth and virulence.  相似文献   

13.
A Biochemical Phenotype for a Disease Resistance Gene of Maize   总被引:10,自引:6,他引:4       下载免费PDF全文
In maize, major resistance to the pathogenic fungus Cochliobolus (Helminthosporium) carbonum race 1 is determined by the dominant allele of the nuclear locus hm. The interaction between C. carbonum race 1 and maize is mediated by a pathogen-produced, low molecular weight compound called HC-toxin. We recently described an enzyme from maize, called HC-toxin reductase, that inactivates HC-toxin by pyridine nucleotide-dependent reduction of an essential carbonyl group. We now report that this enzyme activity is detectable only in extracts of maize that are resistant to C. carbonum race 1 (genotype Hm/Hm or Hm/hm). In several genetic analyses, in vitro HC-toxin reductase activity was without exception associated with resistance to C. carbonum race 1. The results indicate that detoxification of HC-toxin is the biochemical basis of Hm-specific resistance of maize to infection by C. carbonum race 1.  相似文献   

14.
Two new beta-glucanase-encoding genes, EXG2 and MLG2, were isolated from the plant-pathogenic fungus Cochliobolus carbonum using polymerase chain reaction based on amino acid sequences from the purified proteins. EXG2 encodes a 46.6-kDa exo-beta1,3-glucanase and is located on the same 3.5-Mb chromosome that contains the genes of HC-toxin biosynthesis. MLG2 encodes a 26.8-kDa mixed-linked (beta1,3-beta1,4) glucanase with low activity against beta1,4-glucan and no activity against beta1,3-glucan. Specific mutants of EXG2 and MLG2 were constructed by targeted gene replacement. Strains with multiple mutations (genotypes exg1/mlg1, exg2/mlg1, mlg1/mlg2, and exg1/exg2/mlg1/mlg2) were also constructed by sequential disruption and by crossing. Total mixed-linked glucanase activity in culture filtrates of mlg1/mlg2 and exg1/exg2/mlg1/mlg2 mutants was reduced by approximately 73%. Total beta1,3-glucanase activity was reduced by 10, 54, and 96% in exg2, mlg1, and exg1/exg2/mlg1/mlg2 mutants, respectively. The quadruple mutant showed only a modest decrease in growth on beta1,3-glucan or mixed-linked glucan. None of the mutants showed any decrease in virulence.  相似文献   

15.
DNA photolyases harvest light energy to repair genomic lesions induced by UV irradiation, whereas cryptochromes, presumptive descendants of 6-4 DNA photolyases, have evolved in plants and animals as blue-light photoreceptors that function exclusively in signal transduction. Orthologs of 6-4 photolyases are predicted to exist in the genomes of some filamentous fungi, but their function is unknown. In this study, we identified two putative photolyase-encoding genes in the maize foliar pathogen Cercospora zeae-maydis: CPD1, an ortholog of cyclobutane pyrimidine dimer (CPD) photolyases described in other filamentous fungi, and PHL1, a cryptochrome/6-4 photolyase-like gene. Strains disrupted in PHL1 (Deltaphl1) displayed abnormalities in development and secondary metabolism but were unaffected in their ability to infect maize leaves. After exposure to lethal doses of UV light, conidia of Deltaphl1 strains were abolished in photoreactivation and displayed reduced expression of CPD1, as well as RAD2 and RVB2, orthologs of genes involved in nucleotide excision and chromatin remodeling during DNA damage repair. This study presents the first characterization of a 6-4 photolyase ortholog in a filamentous fungus and provides evidence that PHL1 regulates responses to UV irradiation.  相似文献   

16.
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.  相似文献   

17.
The human pathogenic fungus Cryptococcus neoformans secretes a phospholipase enzyme that demonstrates phospholipase B (PLB), lysophospholipase hydrolase and lysophospholipase transacylase activities. This enzyme has been postulated to be a cryptococcal virulence factor. We cloned a phospholipase-encoding gene (PLB1) from C. neoformans and constructed plb1 mutants using targeted gene disruption. All three enzyme activities were markedly reduced in the mutants compared with the wild-type parent. The plb1 strains did not have any defects in the known cryptococcal virulence phenotypes of growth at 37 degrees C, capsule formation, laccase activity and urease activity. The plb1 strains were reconstituted using the wild-type locus and this resulted in restoration of all extracellular PLB activities. In vivo testing demonstrated that the plb1 strain was significantly less virulent than the control strains in both the mouse inhalational model and the rabbit meningitis model. We also found that the plb1 strain exhibited a growth defect in a macrophage-like cell line. These data demonstrate that secretory phospholipase is a virulence factor for C. neoformans.  相似文献   

18.
19.
The entomogenous filamentous fungus, Beauveria bassiana expresses two hydrophobin genes, hyd1 and hyd2, hypothesized to be involved in cell surface hydrophobicity, adhesion, virulence, and to constitute the protective spore coat structure known as the rodlet layer. Targeted gene inactivation of hyd1 resulted in seemingly 'bald' conidia that contained significantly altered surface fascicles or bundles. These cells displayed decreased spore hydrophobicity, loss of water mediated dispersal, changes in surface carbohydrate epitopes and β-1,3-glucan distribution, lowered virulence in insect bioassays, but no effect on adhesion. In contrast, Δhyd2 mutants retained distorted surface bundles, but truncated/incomplete rodlets could be seen within the bundles. Δhyd2 conidia displayed both decreased cell surface hydrophobicity and adhesion, but the mutant was unaffected in virulence. The double Δhyd1Δhyd2 mutant was distinct from the single mutants, lacking both bundles and rodlets, and displaying additively decreased cell surface hydrophobicity, reduced cell attachment and lowered virulence than the Δhyd1 mutant. Epitope tagged constructs of the proteins were used to examine the expression and distribution of the proteins and to demonstrate the continued presence of Hyd2 in the Δhyd1 strain and vice versa. The implications of our results with respect to fascicle and rodlet assembly on the spore surface are discussed.  相似文献   

20.
LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号