首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lumbar cerebrospinal fluid and arterial blood acid-base state were assessed in 19 patients within 24 hours of an acute cerebrovascular accident. Those with haemorrhage into the C.S.F. showed a lower C.S.F. pH and higher C.S.F. lactate than those without haemorrhage but the Pco2, was similar in the two groups, suggesting that this greater C.S.F. acidity was not responsible for a greater degree of hyperventilation. In those without haemorrhage an inverse relation was found between C.S.F. pH and arterial Pco2, suggesting that a non-chemical ventilatory drive—for example, due to central neurological damage—was responsible for the acid-base changes observed.  相似文献   

2.
The end tidal partial pressure of carbon dioxide (Pco2) was measured during treadmill exercise in 30 normal controls and 113 patients referred for assessment of chest pain. Among the 92 patients without significant ST depression hypocapnia occurred more often in those reporting “typical” than “atypical” chest pain (17 of 22 patients compared with 29 of 70; p<0·01). Hypocapnia was uncommon in patients with significant ST depression whether reporting typical or atypical chest pain (one of 10 patients and two of 11, respectively).Hypocapnia at rest (Pco2 <4 kPa) occurred in 16 (14%) patients but in only one control. Hypocapnia occurred during or after exercise in only one control and three of the 21 patients with significant ST depression on exercise (group 1). The remaining 92 patients were divided into those with a history suggestive of hyperventilation (group 2; n=30) and those without (group 3; n=62). Hypocapnia developed significantly more often in both these groups (21 and 25 patients respectively) than in controls or patients with significant ST depression.An abnormal response of the Pco2 to exercise provided objective data to support a clinical suspicion of chest pain induced by hyperventilation in 24 cases, suggested a cause for equivocal ST depression other than coronary stenosis in five patients, and led to the diagnosis of previously unsuspected respiratory disease in 14 patients.Measurement of end tidal Pco2 gives additional valuable diagnostic information during the conventional treadmill exercise test in patients with both typical and atypical chest pain.  相似文献   

3.
Using photoacoustic spectroscopy, state 1-state 2 transitions were demonstrated in vivo in intact sugar maple leaves (Acer saccharum Marsh.) by following the changes in energy storage of photosystems (PS) I and II. Energy storage measured with 650 nm modulated light (light 2) in the presence of background white light indicated the total energy stored by both photosystems (ESt), and in the presence of background far-red light showed the energy stored by PSI (ESpsi). The difference between ESt and ESpsi gave the energy stored by PSII (ESpsii). While ESt remained nearly constant during state transitions, both ESpsi and ESpsii changed considerably. The ratio of ESpsii to ESpsi, an indicator of the energy distribution between the two photosystems, decreased or increased during transition to state 2 or state 1, respectively. State transitions were completed in about 20 min and were fully reversible. During transition from state 1 to state 2, the fraction of excitation energy gained by PSI was nearly equal to that lost by PSII. This fraction of excitation energy transferred from PSII to PSI accounted for about 5% of the absorbed light (fluorescence is not considered), 19% of ESt, 34% of ESpsii, and 43% of ESpsi in state 2. NaF treatment inhibited the transition to state 1. Data in the present study confirm the concept of changes in absorption cross-section of photosystems during state transitions.  相似文献   

4.
Isolation of active mitochondria from tomato fruit   总被引:2,自引:2,他引:0       下载免费PDF全文
An improved method for isolating mitochondria from tomato fruit (Lycopersicon esculentum Mill.) is described. The fruit is chilled, and the tissue of the fruit wall cut by hand into very thin slices with a razor blade while immersed in a buffer containing 0.4 m sucrose, 2 mm MgCl2, 8 mm EDTA, 4 mm cysteine, 10 mm KCl, 0.5 mg per ml bovine serum albumin 50 mm tris-HCl, pH 7.6. The pH is monitored and kept within the range of 7.0 to 7.2 by dropwise addition of 1 n KOH during cutting. The tissue is strained through 8 layers of cheesecloth and centrifuged at 2000 × g for 15 minutes. The supernatant is then centrifuged at 11,000 × g for 20 minutes, and the sediment is washed once with a medium containing 0.4 m sucrose, 10 mm KCl, 1 mm MgCl2, 10 mm tris-HCl, 10 mm KH2PO4 and bovine serum albumin (0.5 mg per ml), pH 7.2. Electron microscope studies show that this method gives homogeneous, relatively intact mitochondria; they have a higher respiratory control ratio than those reported by other workers. The method was also tested successfully on fruits of cantaloupe and `Honey Dew' melon.  相似文献   

5.
Thin strips of frog ventricle were isolated and bathed for 15 min in a solution containing 140 mM KCl, 5 mM Na2ATP, 3 mM EDTA, and 10 mM Tris buffer at pH 7.0. The muscle was then exposed to contracture solutions containing 140 mM KCl, 5 mM Na2ATP, 1 mM MgCl2, 10 mM Tris, 3 mM EGTA, and CaCl2 in amounts to produce concentrations of free calcium from 10-4.8 M to 10-9 M. The muscles developed some tension at approximately 10-8 M, and maximum tension was achieved in 10-5 M Ca++. They relaxed in Ca++ concentrations less than 10-8 M. The development of tension by the EDTA-treated muscles was normalized by comparison with twitch tension at a stimulation rate of 9 per min before exposure to EDTA. In 10-5 M Ca++ tension was always several times the twitch tension and was greater than the contracture tension of a frog ventricular strip in KCl low Na-Ringer. Tension equal to half-maximum was produced at approximately 10-6.2 M Ca++. Intracellular recording of membrane potential indicated that after EDTA treatment the resting potential of cells in Ringer solution with 10-5 M Ca or less was between 5 and 20 mv. Contracture solutions did not produce tension without prior treatment with EDTA. The high permeability of the membrane produced by EDTA was reversed and the normal resting and action potentials restored in 1 mM Ca-Ringer. Similar studies of EDTA-treated rabbit right ventricular papillary muscle produced a similar tension vs. Ca++ concentration relation, and the high permeability state reversed with exposure to normal Krebs solution.  相似文献   

6.
Respiratory pattern and arterial blood gas tensions were assessed in patients with acute cerebrovascular accidents. Hyperventilation, low Pco2, and high arterial pH were associated with a poor prognosis, whereas patients with normal respiratory pattern and blood gas tensions survived. Periodic and Cheyne-Stokes breathing carried an intermediate prognosis.  相似文献   

7.
1. The influence of cations on the active transport into cells of rat-brain-cortex slices of l-histidine, an amino acid that is not metabolized by this tissue, has been studied. 2. Like other amino acids, l-histidine accumulated in the cells in the presence of glucose in concentrations up to over double that in the incubation medium. 3. The active transport of l-histidine was highest in a medium containing Ca2+ (3mm). The addition of K+ (27mm) led to a marked decrease in the intracellular concentration of l-histidine, though the oxygen uptake of the slices was higher. 4. The active l-histidine transport was inhibited by NH4+. The inhibitory effect increased with the NH4+ concentration, being about 25% at 8mm, 65% at 20mm, and 90% at 27 and 50mm. The oxygen uptake of the brain slices was depressed by only 25% by the highest NH4+ concentration used, and less by lower concentrations.  相似文献   

8.
Uridine diphosphate (UDP)-glucose 4-epimerase (EC 5.1.3.2) has been purified over 1000-fold from extracts of wheat germ by MnCl2 treatment, (NH4)2SO4 fractionation, Sephadex column chromatography, and adsorption onto and elution from calcium phosphate gel. The enzyme has a pH optimum of 9.0. Km values are 0.1 mm for UDP-d-galactose and 0.2 mm for UDP-d-glucose. NAD is required for activity; Ka = 0.04 mm. NADH is an inhibitor strictly competitive with NAD; Ki = 2 μm. Wheat germ also contains UDP-l-arabinose 4-epimerase (EC 5.1.3.5) and thymidine diphosphate (TDP)-glucose 4-epimerase which are distinct from UDP-glucose 4-epimerase.  相似文献   

9.
Hyperinsulinemia (HI) is elevated plasma insulin at basal glucose. Impaired glucose tolerance is associated with HI, although the exact cause and effect relationship remains poorly defined. We tested the hypothesis that HI can result from an intrinsic response of the β-cell to chronic exposure to excess nutrients, involving a shift in the concentration dependence of glucose-stimulated insulin secretion. INS-1 (832/13) cells were cultured in either a physiological (4 mm) or high (11 mm) glucose concentration with or without concomitant exposure to oleate. Isolated rat islets were also cultured with or without oleate. A clear hypersensitivity to submaximal glucose concentrations was evident in INS-1 cells cultured in excess nutrients such that the 25% of maximal (S0.25) glucose-stimulated insulin secretion was significantly reduced in cells cultured in 11 mm glucose (S0.25 = 3.5 mm) and 4 mm glucose with oleate (S0.25 = 4.5 mm) compared with 4 mm glucose alone (S0.25 = 5.7 mm). The magnitude of the left shift was linearly correlated with intracellular lipid stores in INS-1 cells (r2 = 0.97). We observed no significant differences in the dose responses for glucose stimulation of respiration, NAD(P)H autofluorescence, or Ca2+ responses between left- and right-shifted β-cells. However, a left shift in the sensitivity of exocytosis to Ca2+ was documented in permeabilized INS-1 cells cultured in 11 versus 4 mm glucose (S0.25 = 1.1 and 1.7 μm, respectively). Our results suggest that the sensitivity of exocytosis to triggering is modulated by a lipid component, the levels of which are influenced by the culture nutrient environment.  相似文献   

10.
Obstructing lesions of the trachea and larynx which cause a predominantly inspiratory obstruction can be satisfactorily diagnosed by measuring both F.I.V.1 and F.E.V.1. Chronic airways obstruction involving intrathoracic airways produces a much lower F.E.V.1/F.I.V.1 percentage than normal, whereas obstruction to larynx and trachea causes a raised F.E.V.1/F.I.V.1 percentage. If flow-volume measurements are not available the F.E.V.1/F.I.V.1 percentage should provide a simple and useful method for diagnosis of upper airways obstruction.In one of the patients reported a predominantly inspiratory obstruction caused CO2 retention. In patients with airways obstruction the correlation between Pco2 and F.I.V.1 was found to be the same as between Pco2 and F.E.V.1. This suggests that respiratory failure can be caused by either inspiratory or expiratory airways obstruction and that neither is of greater importance in producing CO2 retention.  相似文献   

11.
1. Phosphomevalonate kinase and 5-pyrophosphomevalonate decarboxylase have been purified from the freeze-dried latex serum of the commercial rubber tree Hevea brasiliensis. 2. The phosphomevalonate kinase was acid- and heat-labile and required the presence of a thiol to maintain activity. 3. The 5-pyrophosphomevalonate decarboxylase was relatively acid-stable and more heat-stable than the phosphokinase. 4. Maximum activity of the phosphokinase was achieved at pH 7.2 with 0.2mm-5-phosphomevalonate (Km 0.042mm), 2.0mm-ATP (Km 0.19mm) and 8mm-Mg2+ at 40°C. The apparent activation energy was 14.8kcal/mol. 5. Maximum activity of 5-pyrophosphomevalonate decarboxylase was achieved at pH5.5–6.5 with 0.1mm-5-pyrophosphomevalonate (Km 0.004mm), 1.5mm-ATP (Km 0.12mm) and 2mm-Mg2+. The apparent activation energy was 13.7kcal/mol. The enzyme was somewhat sensitive to inhibition by its products, isopentenyl pyrophosphate and ADP.  相似文献   

12.
The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The Km for l-arabinose is 54 ± 6 mm and for d-xylose 155 ± 15 mm.  相似文献   

13.
Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (K m = 1.1 μM) that is mainly involved in L-cystine uptake from outside as a nutrient. E. coli has only two L-cystine importers because ΔydjNΔyecS mutant cells are not capable of growing in the minimal medium containing L-cystine as a sole sulfur source. Another protein YecSC is the FliY-dependent L-cystine transporter that functions cooperatively with the L-cystine transporter YdeD, which exports L-cystine as reducing equivalents from the cytoplasm to the periplasm, to prevent E. coli cells from oxidative stress. The exported L-cystine can reduce the periplasmic hydrogen peroxide to water, and then generated L-cystine is imported back into the cytoplasm via the ATP-binding cassette transporter YecSC with a high affinity to L-cystine (K m = 110 nM) in a manner dependent on FliY, the periplasmic L-cystine-binding protein. The double disruption of ydeD and fliY increased cellular levels of lipid peroxides. From these findings, we propose that the hydrogen peroxide-inducible L-cystine/L-cystine shuttle system plays a role of detoxification of hydrogen peroxide before lipid peroxidation occurs, and then might specific prevent damage to membrane lipids.  相似文献   

14.
The analysis of the urine contents can be informative of physiological homoeostasis, and it has been speculated that the levels of urinary d-serine (d-ser) could inform about neurological and renal disorders. By analysing the levels of urinary d-ser using a d-ser dehydratase (DSD) enzyme, Ito et al. (Biosci. Rep.(2021) 41, BSR20210260) have described abundant levels of l-erythro-β-hydroxyasparagine (l-β-EHAsn), a non-proteogenic amino acid which is also a newly described substrate for DSD. The data presented support the endogenous production l-β-EHAsn, with its concentration significantly correlating with the concentration of creatinine in urine. Taken together, these results could raise speculations that l-β-EHAsn might have unexplored important biological roles. It has been demonstrated that l-β-EHAsn also inhibits serine racemase with Ki values (40 μM) similar to its concentration in urine (50 μM). Given that serine racemase is the enzyme involved in the synthesis of d-ser, and l-β-EHAsn is also a substrate for DSD, further investigations could verify if this amino acid would be involved in the metabolic regulation of pathways involving d-ser.  相似文献   

15.
Effective population size (Ne) is a central evolutionary concept, but its genetic estimation can be significantly complicated by age structure. Here we investigate Ne in Atlantic salmon (Salmo salar) populations that have undergone changes in demography and population dynamics, applying four different genetic estimators. For this purpose we use genetic data (14 microsatellite markers) from archived scale samples collected between 1951 and 2004. Through life table simulations we assess the genetic consequences of life history variation on Ne. Although variation in reproductive contribution by mature parr affects age structure, we find that its effect on Ne estimation may be relatively minor. A comparison of estimator models suggests that even low iteroparity may upwardly bias Ne estimates when ignored (semelparity assumed) and should thus empirically be accounted for. Our results indicate that Ne may have changed over time in relatively small populations, but otherwise remained stable. Our ability to detect changes in Ne in larger populations was, however, likely hindered by sampling limitations. An evaluation of Ne estimates in a demographic context suggests that life history diversity, density-dependent factors, and metapopulation dynamics may all affect the genetic stability of these populations.THE effective size of a population (Ne) is an evolutionary parameter that can be informative on the strength of stochastic evolutionary processes, the relevance of which relative to deterministic forces has been debated for decades (e.g., Lande 1988). Stochastic forces include environmental, demographic, and genetic components, the latter two of which are thought to be more prominent at reduced population size, with potentially detrimental consequences for average individual fitness and population persistence (Newman and Pilson 1997; Saccheri et al. 1998; Frankham 2005). The quantification of Ne in conservation programs is thus frequently advocated (e.g., Luikart and Cornuet 1998; Schwartz et al. 2007), although gene flow deserves equal consideration given its countering effects on genetic stochasticity (Frankham et al. 2003; Palstra and Ruzzante 2008).Effective population size is determined mainly by the lifetime reproductive success of individuals in a population (Wright 1938; Felsenstein 1971). Variance in reproductive success, sex ratio, and population size fluctuations can reduce Ne below census population size (Frankham 1995). Given the difficulty in directly estimating Ne through quantification of these demographic factors (reviewed by Caballero 1994), efforts have been directed at inferring Ne indirectly through measurement of its genetic consequences (see Leberg 2005, Wang 2005, and Palstra and Ruzzante 2008 for reviews). Studies employing this approach have quantified historical levels of genetic diversity and genetic threats to population persistence (e.g., Nielsen et al. 1999b; Miller and Waits 2003; Johnson et al. 2004). Ne has been extensively studied in (commercially important) fish species, due to the common availability of collections of archived samples that facilitate genetic estimation using the temporal method (e.g., Hauser et al. 2002; Shrimpton and Heath 2003; Gomez-Uchida and Banks 2006; Saillant and Gold 2006).Most models relating Ne to a population''s genetic behavior make simplifying assumptions regarding population dynamics. Chiefly among these is the assumption of discrete generations, frequently violated in practice given that most natural populations are age structured with overlapping generations. Here, theoretical predictions still apply, provided that population size and age structure are constant (Felsenstein 1971; Hill 1972). Ignored age structure can introduce bias into temporal genetic methods for the estimation of Ne, especially for samples separated by time spans that are short relative to generation interval (Jorde and Ryman 1995; Waples and Yokota 2007; Palstra and Ruzzante 2008). Moreover, estimation methods that do account for age structure (e.g., Jorde and Ryman 1995) still assume this structure to be constant. Population dynamics will, however, likely be altered as population size changes, thus making precise quantifications of the genetic consequences of acute population declines difficult (Nunney 1993; Engen et al. 2005; Waples and Yokota 2007). This problem may be particularly relevant when declines are driven by anthropogenic impacts, such as selective harvesting regimes, that can affect age structure and Ne simultaneously (Ryman et al. 1981; Allendorf et al. 2008). Demographic changes thus have broad conservation implications, as they can affect a population''s sensitivity to environmental stochasticity and years of poor recruitment (Warner and Chesson 1985; Ellner and Hairston 1994; Gaggiotti and Vetter 1999). Consequently, although there is an urgent need to elucidate the genetic consequences of population declines, relatively little is understood about the behavior of Ne when population dynamics change (but see Engen et al. 2005, 2007).Here we focus on age structure and Ne in Atlantic salmon (Salmo salar) river populations in Newfoundland and Labrador. The freshwater habitat in this part of the species'' distribution range is relatively pristine (Parrish et al. 1998), yet Atlantic salmon in this area have experienced demographic declines, associated with a commercial marine fishery, characterized by high exploitation rates (40–80% of anadromous runs; Dempson et al. 2001). A fishery moratorium was declared in 1992, with rivers displaying differential recovery patterns since then (Dempson et al. 2004b), suggesting a geographically variable impact of deterministic and stochastic factors, possibly including genetics. An evaluation of those genetic consequences thus requires accounting for potential changes in population dynamics as well as in life history. Life history in Atlantic salmon can be highly versatile (Fleming 1996; Hutchings and Jones 1998; Fleming and Reynolds 2004), as exemplified by the high variation in age-at-maturity displayed among and within populations (Hutchings and Jones 1998), partly reflecting high phenotypic plasticity (Hutchings 2004). This diversity is particularly evident in the reproductive biology of males, which can mature as parr during juvenile freshwater stages (Jones and King 1952; Fleming and Reynolds 2004) and/or at various ages as anadromous individuals, when returning to spawn in freshwater from ocean migration. Variability in life history strategies is further augmented by iteroparity, which can be viewed as a bet-hedging strategy to deal with environmental uncertainty (e.g., Orzack and Tuljapurkar 1989; Fleming and Reynolds 2004). Life history diversity and plasticity may allow salmonid fish populations to alter and optimize their life history under changing demography and population dynamics, potentially acting to stabilize Ne. Reduced variance in individual reproductive success at low breeder abundance (genetic compensation) will achieve similar effects and might be a realistic aspect of salmonid breeding systems (Ardren and Kapuscinski 2003; Fraser et al. 2007b). Little is currently known about the relationships between life history plasticity, demographic change and Ne, partly due to scarcity of the multivariate data required for these analyses.Our objective in this article is twofold. First, we use demographic data for rivers in Newfoundland to quantify how life history variation influences age structure in Atlantic salmon and hence Ne and its empirical estimation from genetic data. We find that variation in reproductive contribution by mature parr has a much smaller effect on the estimation of Ne than is often assumed. Second, we use temporal genetic data to estimate Ne and quantify the genetic consequences of demographic changes. We attempt to account for potential sources of bias, associated with (changes in) age structure and life history, by using four different analytical models to estimate Ne: a single-sample estimator using the linkage disequilibrium method (Hill 1981), the temporal model assuming discrete generations (Nei and Tajima 1981; Waples 1989), and two temporal models for species with overlapping generations (Waples 1990a,b; Jorde and Ryman 1995) that differ principally in assumptions regarding iteroparity. A comparison of results from these different estimators suggests that iteroparity may often warrant analytical consideration, even when it is presumably low. Although sometimes limited by statistical power, a quantification and comparison of temporal changes in Ne among river populations suggests a more prominent impact of demographic changes on Ne in relatively small river populations.  相似文献   

16.
The oxidation of d- and l-glycerate by rat liver   总被引:1,自引:1,他引:0  
1. The interconversion of hydroxypyruvate and l-glycerate in the presence of NAD and rat-liver l-lactate dehydrogenase has been demonstrated. Michaelis constants for these substrates together with an equilibrium constant have been determined and compared with those for pyruvate and l-lactate. 2. The presence of d-glycerate dehydrogenase in rat liver has been confirmed and the enzyme has been purified 16–20-fold from the supernatant fraction of a homogenate, when it is free of l-lactate dehydrogenase, with a 23–29% recovery. The enzyme catalyses the interconversion of hydroxypyruvate and d-glycerate in the presence of either NAD or NADP with almost equal efficiency. d-Glycerate dehydrogenase also catalyses the reduction of glyoxylate, but is distinct from l-lactate dehydrogenase in that it fails to act on pyruvate, d-lactate or l-lactate. The enzyme is strongly dependent on free thiol groups, as shown by inhibition with p-chloromercuribenzoate, and in the presence of sodium chloride the reduction of hydroxypyruvate is activated. Michaelis constants for these substrates of d-glycerate dehydrogenase and an equilibrium constant for the NAD-catalysed reaction have been calculated. 3. An explanation for the lowered Vmax. with d-glycerate as compared with dl-glycerate for the rabbit-kidney d-α-hydroxy acid dehydrogenase has been proposed.  相似文献   

17.
Mechanically isolated Asparagus sprengeri Regel mesophyll cells cause alkalinization of the suspension medium on the addition of l-glutamate or its analog l-methionine-d,l-sulfoximine. Using a radiolabeled pH probe, it was found that both compounds caused internal acidification whereas l-aspartate did not. Fusicoccin stimulated H+ efflux from the cells by 111% and the uptake of l-[U-14C]glutamate by 55%. Manometric experiments demonstrated that, unlike l-methionine-d,l-sulfoximine, l-glutamate stimulated CO2 evolution from nonilluminated cells. Simultaneous measurements of medium alkalinization and 14CO2 evolution upon the addition of labeled l-glutamate showed that alkalinization was immediate and reached a maximum value after 45 minutes whereas 14CO2 evolution exhibited a lag before its appearance and continued in a linear manner for at least 100 minutes. Rates of alkalinization and uptake of l-[U-14C]glutamate were higher in the light while rates of 14CO2 evolution were higher in the dark. The major labeled product of glutamate decarboxylation, γ-aminobutyric acid, was found in the cells and the suspension medium. Its addition to the cell suspension did not result in medium alkalinization and evidence indicates that it is lost from the cell to the medium. The data suggest that the origin of medium alkalinization is co-transport not metabolism, and that the loss of labeled CO2 and γ-aminobutyric acid from the cell result in an overestimation of the stoichiometry of the H+/l-glutamate uptake process.  相似文献   

18.
Emission of Hydrogen Sulfide by Leaf Tissue in Response to l-Cysteine   总被引:6,自引:2,他引:4  
Leaf discs and detached leaves exposed to l-cysteine emitted a volatile sulfur compound which was proven by gas chromatography to be H2S. This phenomenon was demonstrated in all nine species tested (Cucumis sativus, Cucurbita pepo, Nicotiana tabacum, Coleus blumei, Beta vulgaris, Phaseolus vulgaris, Medicago sativa, Hordeum vulgare, and Gossypium hirsutum). The emission of volatile sulfur by cucumber leaves occurred in the dark at a similar rate to that in the light. The emission of leaf discs reached the maximal rate, more than 40 picomoles per minute per square centimeter, 2 to 4 hours after starting exposure to l-cysteine; then it decreased. In the case of detached leaves, the maximum occurred 5 to 10 h after starting exposure. The average emission rate of H2S during the first 4 hours from leaf discs of cucurbits in response to 10 millimolar l-cysteine, was usually more than 40 picomoles per minute per square centimeter, i.e. 0.24 micromoles per hour per square decimeter. Leaf discs exposed to 1 millimolar l-cysteine emitted only 2% as much as did the discs exposed to 10 millimolar l-cysteine. The emission from leaf discs and from detached leaves lasted for at least 5 and 15 hours, respectively. However, several hours after the maximal emission, injury of the leaves, manifested as chlorosis, was evident. H2S emission was a specific consequence of exposure to l-cysteine; neither d-cysteine nor l-cystine elicited H2S emission. Aminooxyacetic acid, an inhibitor of pyridoxal phosphate dependent enzymes, inhibited the emission. In a cell free system from cucumber leaves, H2S formation and its release occurred in response to l-cysteine. Feeding experiments with [35S]l-cysteine showed that most of the sulfur in H2S was derived from sulfur in the l-cysteine supplied and that the H2S emitted for 9 hours accounted for 7 to 10% of l-cysteine taken up. 35S-labeled SO32− and SO42− were found in the tissue extract in addition to internal soluble S2−. These findings suggest the existence of a sulfur cycle which converts l-cysteine to SO42− through cysteine desulfhydration.  相似文献   

19.
1. Three bacterial isolates capable of growth on l-threonine medium only when supplemented with branched-chain amino acids, and possessing high l-threonine dehydratase activity, were examined to elucidate the catabolic route for the amino acid. 2. Growth, manometric, radiotracer and enzymic experiments indicated that l-threonine was catabolized by initial deamination to 2-oxobutyrate and thence to propionate. No evidence was obtained for the involvement of l-threonine 3-dehydrogenase or l-threonine aldolase in threonine catabolism. 3. l-Threonine dehydratase of Corynebacterium sp. F5 (N.C.I.B. 11102) was partially purified and its kinetic properties were examined. The enzyme exhibited a sigmoid kinetic response to substrate concentration. The concentration of substrate giving half the maximum velocity, [S0.5], was 40mm and the Hill coefficient (h) was 2.0. l-Isoleucine inhibited enzyme activity markedly, causing 50% inhibition at 60μm, but did not affect the Hill constant. At the fixed l-threonine concentration of 10mm, the effect of l-valine was biphasic, progressive activation occurring at concentrations up to 2mm-l-valine, but was abolished by higher concentrations. Substrate-saturation plots for the l-valine-activated enzyme exhibited normal Michaelis–Menten kinetics with a Hill coefficient (h) of 1.0. The kinetic properties of the enzyme were thus similar to those of the `biosynthetic' isoenzyme from Rhodopseudomonas spheroides rather than those of the enteric bacteria. 4. The synthesis of l-threonine dehydratase was constitutive and was not subject to multivalent repression by l-isoleucine or other branched-chain amino acids either singly or in combination. 5. The catabolism of l-threonine, apparently initiated by a `biosynthetic' l-threonine dehydratase in the isolates studied, depended on the concomitant catabolism of branched-chain amino acids. The biochemical basis of this dependence appeared to lie in the further catabolism of 2-oxobutyrate by enzymes which required branched-chain 2-oxo acids for their induction.  相似文献   

20.
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin''s cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号